Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T06:21:04.882Z Has data issue: false hasContentIssue false

Investigating low data consistency in work planning processes – causes, measures, and opportunities

Published online by Cambridge University Press:  16 May 2024

Valesko Dausch*
Affiliation:
University of Stuttgart, Germany
Christopher Langner
Affiliation:
University of Stuttgart, Germany
Daniel Roth
Affiliation:
University of Stuttgart, Germany
Matthias Kreimeyer
Affiliation:
University of Stuttgart, Germany
Matthias R. Guertler
Affiliation:
University of Technology Sydney, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Digital transformation increases the need for interdisciplinary collaboration along the product lifecycle. It is currently hindered by a low data consistency resulting from the use of heterogeneous systems and data models. Especially in work planning, where several data models are combined, this decreases efficiency. Systems Lifecycle management (SysLM) offers a solution to this remedy. However, a sudden switch to SysLM is not possible in brownfields. Thus, it is necessary to examine the challenges and opportunities to derive case-specific measures that enable its adoption in work planning.

Type
Design Organisation, Collaboration and Management
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Acker, I.J. (2011), Methoden zur mehrstufigen Ablaufplanung in der Halbleiterindustrie, Gabler, Wiesbaden, https://dx.doi.org/10.1007/978-3-8349-6731-2.CrossRefGoogle Scholar
Arndt, K.-D. (2021), “Arbeitsvorbereitung und Arbeitsplanung”, in Böge, A. and Böge, W. (Eds.), Handbuch Maschinenbau, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 16351671, https://dx.doi.org/10.1007/978-3-658-30273-3_86.CrossRefGoogle Scholar
Biffl, S., Lüder, A. and Winkler, D. (2016), “Multi-Disciplinary Engineering for Industrie 4.0: Semantic Challenges and Needs”, in Biffl, S. and Sabou, M. (Eds.), Semantic Web Technologies for Intelligent Engineering Applications, Springer International Publishing, Cham, pp. 1751, https://dx.doi.org/10.1007/978-3-319-41490-4_2.CrossRefGoogle Scholar
Bleisinger, O., Psota, T., Masior, J., Pfenning, M., Roth, A., Reichwein, A., Hooshmand, Y., et al. (2022), “Killing the PLM Monolith - the Emergence of cloud-native System Lifecycle Management (SysLM)”.Google Scholar
Bremer, C. (2020), Systematik zur Modellierung flexibler Produktionsanlagen im Model-Based Systems Engineering.Google Scholar
Cimini, C., Pinto, R. and Cavalieri, S. (2017), “The business transformation towards smart manufacturing: a literature overview about reference models and research agenda”, IFAC-PapersOnLine, Vol. 50 No. 1, pp. 1495214957, https://dx.doi.org/10.1016/j.ifacol.2017.08.2548.CrossRefGoogle Scholar
Daase, C., Haertel, C., Nahhas, A., Volk, M., Steigerwald, H., Ramesohl, A., Schneider, B., et al. (2023), “Following the Digital Thread – A Cloud-Based Observation”, Procedia Computer Science, Vol. 217, pp. 18671876, https://dx.doi.org/10.1016/j.procs.2022.12.387.CrossRefGoogle Scholar
Eigner, M. (2021), System Lifecycle Management - Digitalisierung Des Engineering, Springer Berlin / Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Eigner, M., August, U. and Schmich, M. (2016), “Smarte Produkte erfordern ein Umdenken bei Produktstrukturen und Prozessen: Digitalisierung, Integration, Interdisziplinarität und Föderation”.Google Scholar
Eigner, M., Koch, W. and Muggeo, C. (Eds.). (2017), Modellbasierter Entwicklungsprozess Cybertronischer Systeme: Der PLM-Unterstützte Referenzentwicklungsprozess Für Produkte Und Produktionssysteme, Springer Vieweg, Berlin; Heidelber.CrossRefGoogle Scholar
Eigner, M. and Stelzer, R.H. (2009), Product Lifecycle Management: Ein Leitfaden Für Product Development Und Lifecycle Management, 2., neu bearb. Aufl., Springer, Berlin; Heidelberg, https://dx.doi.org/10.1007/978-3-540-68401-5.CrossRefGoogle Scholar
Ferrer, B., Ahmad, B., Vera, D. and Lobov, A. (2016), “Product, process and resource model coupling for knowledge-driven assembly automation”.Google Scholar
Matthes, D. (2011), Enterprise Architecture Frameworks Kompendium: Über 50 Rahmenwerke für das IT-Management, Springer, Berlin, Heidelberg, https://dx.doi.org/10.1007/978-3-642-12955-1.CrossRefGoogle Scholar
Noy, N. and Mcguinness, D. (2001), “Ontology Development 101: A Guide to Creating Your First Ontology”, Knowledge Systems Laboratory, Vol. 32.Google Scholar
PTC. (2017), “An Executive Summary: Enable Digital Transformation Through a Collaborative Approach Between Design and Manufacturing”, available at: https://www.ptc.com/en/resources/plm/white-paper/digital-thread-collaboration (accessed 10 November 2023).Google Scholar
PTC. (2020), “PLM and ERP. Their respective roles in modern manufacturing”, available at: https://www.ptc.com/en/resources/plm/white-paper/plm-and-erp-in-modern-manufacturing (accessed 10 November 2023).Google Scholar
Sendler, U. (2013), Industrie 4. 0: Beherrschung Der Industriellen Komplexität Mit SysLM, 1st ed., Springer Berlin / Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Straub, K. and Riedel, O. (2006), “Virtuelle Absicherung im Produktprozess eines Premium- Automobilherstellers”, in Dietrich, L. and Schirra, W. (Eds.), Innovationen durch IT: Erfolgsbeispiele aus der Praxis Produkte — Prozesse — Geschäftsmodelle, Springer, Berlin, Heidelberg, pp. 189205, https://dx.doi.org/10.1007/3-540-34843-3_13.CrossRefGoogle Scholar
Tornatzky, L.G. and Fleischer, M. (1990), The Processes of Technological Innovation, 4. print., Lexington Books, Lexington, Mass.Google Scholar
Watermeyer, K. (2016), “Grundlagen der Prozess- und Ablaufplanung”, in Watermeyer, K. (Ed.), Ablaufplanung mit alternativen Prozessplänen, Springer Fachmedien, Wiesbaden, pp. 512, https://dx.doi.org/10.1007/978-3-658-12093-1_2.CrossRefGoogle Scholar
Wiendahl, H.-P. (2019), “Betriebsorganisation für Ingenieure”, Betriebsorganisation Für Ingenieure, Carl Hanser Verlag GmbH & Co. KG, pp. 114, https://dx.doi.org/10.3139/9783446460614.fm.CrossRefGoogle Scholar
Wiendahl, H.-P., Reichardt, J. and Nyhuis, P. (2014), “Handbuch Fabrikplanung”, Handbuch Fabrikplanung, Carl Hanser Verlag GmbH & Co. KG, p. I–XXIII, https://dx.doi.org/10.3139/9783446437029.fm.CrossRefGoogle Scholar
Zehbold, C. (2018), Digitalisierung in Industrie-, Handels- Und Dienstleistungsunternehmen: Konzepte - Lösungen - Beispiele, Gabler, Wiesbaden.Google Scholar