Article contents
Integrating large language models for improved failure mode and effects analysis (FMEA): a framework and case study
Published online by Cambridge University Press: 16 May 2024
Abstract
The manual execution of failure mode and effects analysis (FMEA) is time-consuming and error-prone. This article presents an approach in which large language models (LLMs) are integrated into FMEA. LLMs improve and accelerate FMEA with human in the loop. The discussion looks at software tools for FMEA and emphasizes that the tools must be tailored to the needs of the company. Our framework combines data collection, pre-processing and reliability assessment to automate FMEA. A case study validates this framework and demonstrates its efficiency and accuracy compared to manual FMEA.
Keywords
- Type
- Artificial Intelligence and Data-Driven Design
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2024.
References
- 1
- Cited by