Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T18:05:03.908Z Has data issue: false hasContentIssue false

Harmonizing human-AI synergy: behavioral science in AI-integrated design

Published online by Cambridge University Press:  16 May 2024

Dirk Van Rooy*
Affiliation:
University of Antwerp, Belgium
Kristof Vaes
Affiliation:
University of Antwerp, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper explores the role of integrating behavioral science to refine human-AI interaction, essential for ensuring safety and efficiency. Advocating for empathetic, user-centric design, the paper illustrates how behavioral insights can effectively inform AI-integrated designs, making AI applications more intuitive and ethically aligned with diverse human needs. This approach can ultimately enrich interaction across systems, fostering a more harmonious human-AI synergy.

Type
Artificial Intelligence and Data-Driven Design
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

AlKhars, M., Evangelopoulos, N., Pavur, R., & Kulkarni, S. (2019). Cognitive biases resulting from the representativeness heuristic in operations management: an experimental investigation. Psychology Research and Behavior Management, 12, 263276. https://doi.org/10.2147/PRBM.S193092CrossRefGoogle ScholarPubMed
Aygun, A., Nguyen, T., Haga, Z., Aeron, S., & Scheutz, M. (2022). Investigating Methods for Cognitive Workload Estimation for Assistive Robots. Sensors , 22(18). https://doi.org/10.3390/s22186834CrossRefGoogle ScholarPubMed
Bhandari, G., Hassanein, K., & Deaves, R. (2008). Debiasing investors with decision support systems: An experimental investigation. Decision Support Systems, 46(1), 399410. https://doi.org/10.1016/j.dss.2008.07.010CrossRefGoogle Scholar
Broadbent, D. (1990). A Problem Looking for Solutions. Psychological Science, 1(4), 235239. https://doi.org/10.1111/j.1467-9280.1990.tb00206.xCrossRefGoogle Scholar
Choi, J. K., & Ji, Y. G. (2015). Investigating the Importance of Trust on Adopting an Autonomous Vehicle. International Journal of Human–Computer Interaction, 31(10), 692702. https://doi.org/10.1080/10447318.2015.1070549CrossRefGoogle Scholar
Cialdini, R. B., & Jacobson, R. P. (2021). Influences of social norms on climate change-related behaviors. Current Opinion in Behavioral Sciences, 42, 18. https://doi.org/10.1016/j.cobeha.2021.01.005CrossRefGoogle Scholar
Cross, E. S., & Ramsey, R. (2021). Mind Meets Machine: Towards a Cognitive Science of Human–Machine Interactions. Trends in Cognitive Sciences, 25(3), 200212. https://doi.org/10.1016/j.tics.2020.11.009CrossRefGoogle ScholarPubMed
de Melo, C. M., Kim, K., Norouzi, N., Bruder, G., & Welch, G. (2020). Reducing Cognitive Load and Improving Warfighter Problem Solving With Intelligent Virtual Assistants. Frontiers in Psychology, 11, 554706. https://doi.org/10.3389/fpsyg.2020.554706CrossRefGoogle ScholarPubMed
Deterding, S. (2012). Gamification: designing for motivation. Interactions, 19(4), 1417. https://doi.org/10.1145/2212877.2212883CrossRefGoogle Scholar
Endsley, M. R., & Kiris, E. O. (1995). The Out-of-the-Loop Performance Problem and Level of Control in Automation. Human Factors, 37(2), 381394. https://doi.org/10.1518/001872095779064555CrossRefGoogle Scholar
Eva, K. W., & Norman, G. R. (2005). Heuristics and biases--a biased perspective on clinical reasoning [Review of Heuristics and biases--a biased perspective on clinical reasoning]. Medical Education, 39(9), 870872. https://doi.org/10.1111/j.1365-2929.2005.02258.xCrossRefGoogle ScholarPubMed
Ferreira, J. M., Acuña, S. T., Dieste, O., Vegas, S., Santos, A., Rodríguez, F., & Juristo, N. (2020). Impact of usability mechanisms: An experiment on efficiency, effectiveness and user satisfaction. Information and Software Technology, 117(106195), 106195. https://doi.org/10.1016/j.infsof.2019.106195CrossRefGoogle Scholar
George, J. F., Duffy, K., & Ahuja, M. (2000). Countering the anchoring and adjustment bias with decision support systems. Decision Support Systems, 29(2), 195206. https://doi.org/10.1016/s0167-9236(00)00074-9CrossRefGoogle Scholar
Gong, M., Lempert, R., Parker, A., Mayer, L. A., Fischbach, J., Sisco, M., Mao, Z., Krantz, D. H., & Kunreuther, H. (2017). Testing the scenario hypothesis: An experimental comparison of scenarios and forecasts for decision support in a complex decision environment. Environmental Modelling and Software[R], 91, 135155. https://doi.org/10.1016/j.envsoft.2017.02.002CrossRefGoogle Scholar
Hopko, S., Wang, J., & Mehta, R. (2022). Human Factors Considerations and Metrics in Shared Space Human-Robot Collaboration: A Systematic Review. Frontiers in Robotics and AI, 9, 799522. https://doi.org/10.3389/frobt.2022.799522CrossRefGoogle ScholarPubMed
Jardine, P. T., & Givigi, S. (2021). Improving Control Performance of Unmanned Aerial Vehicles through Shared Experience. Journal of Intelligent and Robotic Systems, 102(3), 68. https://doi.org/10.1007/s10846-021-01387-1CrossRefGoogle Scholar
Kaempf, G. L., & Klein, G. (2017). Aeronautical decision making: The next generation. In Aviation psychology in practice (pp. 223–254). Routledge.Google Scholar
Kahneman, D. (2013). Thinking, Fast and Slow (1st ed.). Farrar, Straus and Giroux. https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374533555Google Scholar
Krausman, A., Neubauer, C., Forster, D., Lakhmani, S., Baker, A. L., Fitzhugh, S. M., Gremillion, G., Wright, J. L., Metcalfe, J. S., & Schaefer, K. E. (2022). Trust Measurement in Human-Autonomy Teams: Development of a Conceptual Toolkit. ACM Transactions on Human-Robot Interaction, 11(3), 158. https://doi.org/10.1145/3530874CrossRefGoogle Scholar
Lee, J.-G., Kim, K. J., Lee, S., & Shin, D.-H. (2015). Can Autonomous Vehicles Be Safe and Trustworthy? Effects of Appearance and Autonomy of Unmanned Driving Systems. International Journal of Human–Computer Interaction, 31(10), 682691. https://doi.org/10.1080/10447318.2015.1070547Google Scholar
Lighthall, G. K., & Vazquez-Guillamet, C. (2015). Understanding Decision Making in Critical Care. Clinical Medicine & Research, 13(3-4), 156168. https://doi.org/10.3121/cmr.2015.1289CrossRefGoogle ScholarPubMed
Lunter, J. (2020). Beating the bias in facial recognition technology. Biometric Technology Today, 2020(9), 5. https://doi.org/10.1016/S0969-4765(20)30122-3CrossRefGoogle Scholar
Meppelink, C. S., Smit, E. G., Fransen, M. L., & Diviani, N. (2019). “I was Right about Vaccination”: Confirmation Bias and Health Literacy in Online Health Information Seeking. Journal of Health Communication, 24(2), 129140. https://doi.org/10.1080/10810730.2019.1583701CrossRefGoogle ScholarPubMed
Mertens, S., Herberz, M., Hahnel, U. J. J., & Brosch, T. (2022). The effectiveness of nudging: A meta-analysis of choice architecture interventions across behavioral domains. Proceedings of the National Academy of Sciences of the United States of America, 119(1). https://doi.org/10.1073/pnas.2107346118Google ScholarPubMed
Norman, D. (2013). The Design of Everyday Things: Revised and Expanded Edition. Hachette UK. https://play.google.com/store/books/details?id=I1o4DgAAQBAJGoogle Scholar
Norris, J. N. (2018). Human Factors in Military Maritime and Expeditionary Settings: Opportunity for Autonomous Systems? Advances in Human Factors in Robots and Unmanned Systems, 139147. https://doi.org/10.1007/978-3-319-60384-1_14CrossRefGoogle Scholar
Nurse, M. S., Ross, R. M., Isler, O., & Van Rooy, D. (2022). Analytic thinking predicts accuracy ratings and willingness to share COVID-19 misinformation in Australia. Memory & Cognition, 50(2), 425434. https://doi.org/10.3758/s13421-021-01219-5CrossRefGoogle ScholarPubMed
Pomranky, R. A., & Wojciechowski, J. Q. (2007). Determination of mental workload during operation of multiple unmanned systems. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD HUMAN RESEARCH AND ENGINEERING …. https://apps.dtic.mil/sti/citations/ADA474506CrossRefGoogle Scholar
Sparrow, R. (2009). Building a better warbot: ethical issues in the design of unmanned systems for military applications. Science and Engineering Ethics, 15(2), 169187. https://doi.org/10.1007/s11948-008-9107-0CrossRefGoogle ScholarPubMed
Stea, S., & Pickering, G. J. (2019). Optimizing Messaging to Reduce Red Meat Consumption. Environmental Communication, 13(5), 633648. https://doi.org/10.1080/17524032.2017.1412994CrossRefGoogle Scholar
Thieme, C. A., & Utne, I. B. (2017). A risk model for autonomous marine systems and operation focusing on human–autonomy collaboration. Proceedings of the Institution of Mechanical Engineers. Part O, Journal of Risk and Reliability, 231(4), 446464. https://doi.org/10.1177/1748006x17709377Google Scholar
Todd, P., & Benbasat, I. (1991). An Experimental Investigation of the Impact of Computer Based Decision Aids on Decision Making Strategies. Information Systems Research, 2(2), 87115. https://doi.org/10.1287/isre.2.2.87CrossRefGoogle Scholar
Voyer, B. G. (2015). “Nudging” behaviours in healthcare: insights from behavioural economics. British Journal of Healthcare Management, 21(3), 130135. https://doi.org/10.12968/bjhc.2015.21.3.130CrossRefGoogle Scholar
Wenker, K. (2022). A Systematic Literature Review on Persuasive Technology at the Workplace. In arXiv [cs.HC]. arXiv. http://arxiv.org/abs/2201.00329CrossRefGoogle Scholar
Wiltshire, T. J., Rosch, K., Fiorella, L., & Fiore, S. M. (2014). Training for Collaborative Problem Solving: Improving Team Process and Performance through Metacognitive Prompting. Proceedings of the Human Factors and Ergonomics Society. Annual Meeting Human Factors and Ergonomics Society. Meeting, 58(1), 11541158. https://doi.org/10.1177/1541931214581241CrossRefGoogle Scholar
Wiltshire, T. J., van Eijndhoven, K., Halgas, E., & Gevers, J. M. P. (2022). Prospects for Augmenting Team Interactions with Real-Time Coordination-Based Measures in Human-Autonomy Teams. Topics in Cognitive Science. https://doi.org/10.1111/tops.12606CrossRefGoogle Scholar
Yuh, M. S., Byeon, S., Hwang, I., & Jain, N. (2022). A Heuristic Strategy for Cognitive State-based Feedback Control to Accelerate Human Learning. IFAC-PapersOnLine, 55(41), 107112. https://doi.org/10.1016/j.ifacol.2023.01.111CrossRefGoogle Scholar
Zaharias, P., & Poulymenakou, A. (2006). Implementing learner-centred design: The interplay between usability and instructional design practices. Interactive Technology and Smart Education, 3(2), 87100. https://doi.org/10.1108/17415650680000055CrossRefGoogle Scholar