Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T11:35:00.641Z Has data issue: false hasContentIssue false

Designing a framework for actuators for adaptive structures

Published online by Cambridge University Press:  16 May 2024

Matthias J. Bosch*
Affiliation:
University of Stuttgart, Germany
Markus Nitzlader
Affiliation:
University of Stuttgart, Germany
Matthias Bachmann
Affiliation:
University of Stuttgart, Germany
Hansgeorg Binz
Affiliation:
University of Stuttgart, Germany
Lucio Blandini
Affiliation:
University of Stuttgart, Germany
Matthias Kreimeyer
Affiliation:
University of Stuttgart, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Adaptive structures have the potential to play a significant role in saving resources in the construction industry in the future. For realisation, this requires actuators that meet the requirements of different buildings with their specific load-bearing structures. In the past, the actuators were mainly developed particularly for one exemplary load-bearing structure. This paper analyses the primary classifications for buildings, followed by challenges of adaptive structures, before outlining the draft of a framework for actuators for adaptive structures to speed up and simplify development.

Type
Design Methods and Tools
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Blandini, L., Eisenbarth, C., Haase, W., Jeong, M., Voigt, M., et al. . (2023), “Adaptive Textile Facade Systems-The Experimental Works at D1244”, In: Bedon, C., Kozlowsk, M. and Stepinac, M. (Eds.), Facade Design - Challenges and Future Perspective, IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.113125.Google Scholar
Blandini, L., Haase, W., Weidner, S., Böhm, M., Burghardt, T., et al. . (2022), “D1244: Design and Construction of the First Adaptive High-Rise Experimental Building”, Frontiers in Built Environment, Vol. 8. Article 814911. https://doi.org/10.3389/fbuil.2022.814911.CrossRefGoogle Scholar
Block, P., Gengnagel, C., Peters, S., Aubert, M. and Pirker, E. (2019), Faustformel Tragwerksentwurf, 2. Auflage, Deutsche Verlags-Anstalt, München.Google Scholar
Borschewski, D., Albrecht, S., Bischoff, M., Blandini, L., Bosch, M., et al. . (2022), “Ökobilanzierung adaptiver Hüllen und Strukturen”, Bautechnik, Vol. 99 No. 10, pp. 731745. https://doi.org/10.1002/bate.202200067.CrossRefGoogle Scholar
Borschewski, D., Voigt, M.P., Albrecht, S., Roth, D., Kreimeyer, M. and Leistner, P. (2023), “Why are adaptive facades not widely used in practice? Identifying ecological and economical benefits with life cycle assessment”, Building and Environment, Vol. 232, p. 110069. https://doi.org/10.1016/j.buildenv.2023.110069.CrossRefGoogle Scholar
Bosch, M.J., Nitzlader, M., Burghardt, T., Bachmann, M., Binz, et al. (2022), “Design of integrated fluidic actuators for muti-axial loaded structural elements”, 8th European Congress on Computational Methods in Applied Sciences and Engineering, 2022, Oslo, Norway, CIMNE. https://doi.org/10.23967/eccomas.2022.081.CrossRefGoogle Scholar
Bosch, M.J., Nitzlader, M., Voigt, M.P., Bachmann, M., Roth, D., et al. . (2023), “Interdisziplinäre Entwicklung einer adaptiven Geschossdecke als leichtes Tragwerkselement im Bauwesen”, Stuttgarter Symposium für Produktentwicklung SSP 2023: Tagungsband zur Konferenz, July 2023, Stuttgart, Fraunhofer IAO, Stuttgart, pp. 211-222 http://doi.org/10.18419/opus-13131CrossRefGoogle Scholar
Burghardt, T., Honold, C., Bachmann, M., Roth, D., Binz, H., et al. . (2021), “Anforderungsermittlung für adaptive Stützen und Aussteifungselemente in Tragkonstruktionen/Requirements Determination for Adaptive Supports and Bracing Elements in Building Structures”, Konstruktion, Vol. 73 No. 10, pp. 6470. https://doi.org/10.37544/0720-5953-2021-10-64.CrossRefGoogle Scholar
Burghardt, T., Honold, C., Böhm, M., Heidingsfeld, J.L., Bachmann, M., et al. . (2023), “Entwicklung von Aktoren für ein adaptives Hochhaustragwerk/Development of Actuators for an Adaptive High-rise Building Structure”, Konstruktion, Vol. 75 No. 01-02, pp. 6874. https://doi.org/10.37544/0720-5953-2023-01-02-68.CrossRefGoogle Scholar
Burghardt, T., Kelleter, C., Bosch, M., Nitzlader, M., Bachmann, M., et al. . (2022), “Investigation of a large-scale adaptive concrete beam with integrated fluidic actuators”, Civil Engineering Design, Vol. 4 No. 1-3, pp. 3542. https://doi.org/10.1002/cend.202100037.CrossRefGoogle Scholar
Büttner, O. and Hampe, E. (1985), Bauwerk, Tragwerk, Tragstruktur: Bd. 2. Klassifizierung, Tragqualität, Bauwerkbeispiele, Ernst Verl. für Architektur u. Techn. Wiss, Berlin.Google Scholar
Crostack, A.A.H. (2018), Grundlagen einer Konstruktionsmethodik für Hybride Intelligente Konstruktionselemente (HIKE), [PhD Thesis], University of Stuttgart. https://doi.org/10.18419/opus-10326.CrossRefGoogle Scholar
Czichos, H. (2019), Mechatronik, Springer Fachmedien Wiesbaden, Wiesbaden. https://doi.org/10.1007/978-3-658-26294-5.CrossRefGoogle Scholar
Honold, C., Leistner, S., Roth, D., Binz, H. and Sobek, W. (2019), “Anforderungen in der Entwurfsphase des integralen Planungsprozesses adaptiver Gebäude”, in Binz, H., Bertsche, B., Bauer, W., Riedel, O., Spath, D. and Roth, D. (Eds.), Stuttgarter Symposium für Produktentwicklung SSP 2019: Tagungsband zur Konferenz, May 2019, Stuttgart, Fraunhofer IAO, Stuttgart, pp. 203212.Google Scholar
Isermann, R. (2008), Mechatronische Systeme: Grundlagen, 2. ed., Springer, Berlin, Heidelberg, New York, NY. https://doi.org/10.1007/978-3-540-32512-3.Google Scholar
Kelleter, C. (2022), “Untersuchungen zur Manipulation des Lastabtrages biegebeanspruchter Betonbauteile durch integrierte fluidische Aktoren”, [PhD Thesis], Institute for Lightweight Structures and Conceptual Design, University of Stuttgart, Stuttgart. https://doi.org/10.18419/opus-12236.CrossRefGoogle Scholar
Kister, J. (2022), Neufert Bauentwurfslehre, 43rd ed., Springer Vieweg, Wiesbaden, Heidelberg.Google Scholar
Neuhaeuser, S., Weickgenannt, M., Witte, C., Haase, W., Sawodny, O. and Sobek, W. (2013), “Stuttgart smartshell - A full scale prototype of an adaptive shell structure”, Journal of the International Association for Shell and Spatial Structures, Vol. 54 No. 178, pp. 259270.Google Scholar
Nitzlader, M., Bosch, M.J., Binz, H., Kreimeyer, M. and Blandini, L. (2022a), “Actuation of concrete slabs under bending with integrated fluidic actuators”, 15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII), July 31 to August 5, 2022, Yokohama, Japan, CIMNE. https://doi.org/10.23967/wccm-apcom.2022.014.CrossRefGoogle Scholar
Nitzlader, M., Steffen, S., Bosch, M.J., Binz, H., Kreimeyer, M. and Blandini, L. (2022b), “Designing Actuation Concepts for Adaptive Slabs with Integrated Fluidic Actuators Using Influence Matrices”, CivilEng, Vol. 3 No. 3, pp. 809830. https://doi.org/10.3390/civileng3030047.CrossRefGoogle Scholar
Reksowardojo, A.P., Senatore, G. and Smith, I.F.C. (2019), “Experimental Testing of a Small-Scale Truss Beam That Adapts to Loads Through Large Shape Changes”, Frontiers in Built Environment Vol. 5. Article 93. https://doi.org/10.3389/fbuil.2019.00093.CrossRefGoogle Scholar
Schnellenbach-Held, M., Fakhouri, A., Steiner, D. and Kühn, O. (2014), Adaptive Spannbetonstruktur mit lernfähigem Fuzzy-Regelungssystem, Forschung kompakt, 18/14, Carl Schünemann Verlag, Bremen.Google Scholar
Senatore, G., Duffour, P., Winslow, P. and Wise, C. (2018), “Shape control and whole-life energy assessment of an ‘infinitely stiff’ prototype adaptive structure”, Smart Materials and Structures, Vol. 27 No. 1, p. 15022. https://doi.org/10.1088/1361-665X/aa8cb8.CrossRefGoogle Scholar
Sobek, W. (2016), “Ultra-lightweight construction”, International Journal of Space Structures, Vol. 31 No. 1, pp. 7480. https://doi.org/10.1177/0266351116643246.CrossRefGoogle Scholar
Sobek, W. and Heinlein, F. (Eds.) (2022), Ausgehen muss man von dem, was ist, Non nobis – über das Bauen in der Zukunft / Werner Sobek, Buch 1, avedition, Stuttgart.Google Scholar
Sobek, W., Sawodny, O., Bischoff, M., Blandini, L., Böhm, M., et al. . (2021), “Adaptive Hüllen und Strukturen”, Bautechnik, Vol. 98 No. 3, pp. 208221. https://doi.org/10.1002/bate.202000107.CrossRefGoogle Scholar
Steffen, S. (2023), “Ableitung von Typologien adaptiver Hochhausstabtragwerke mittels der Methode der Einflussmatrizen”, [PhD Thesis], Institute for Lightweight Structures and Conceptual Design, University of Stuttgart, Stuttgart. https://doi.org/10.18419/opus-13129.CrossRefGoogle Scholar
Steffen, S., Nitzlader, M., Burghardt, T., Binz, H., Blandini, L. and Sobek, W. (2021), “An Actuator Concept for Adaptive Concrete Columns”, Actuators, Vol. 10 No. 10, p. 273. https://doi.org/10.3390/act10100273.CrossRefGoogle Scholar
Steffen, S., Zeller, A., Böhm, M., Sawodny, O., Blandini, L. and Sobek, W. (2022), “Actuation concepts for adaptive high-rise structures subjected to static wind loading”, Engineering Structures, Vol. 267, p. 114670. https://doi.org/10.1016/j.engstruct.2022.114670.CrossRefGoogle Scholar
UNEP (2020), 2020 Global Status Report for Buildings and Construction: Towards a Zero-emissions, Efficient and Resilient Buildings and Construction Sector - Executive Summary. [online] United Nations Environment Programme. Available at: https://wedocs.unep.org/20.500.11822/34572 (accessed 12.02.2024).Google Scholar
Verein Deutscher Ingenieure (VDI) (2021), VDI/VDE 2206, Entwicklung cyber-physischer mechatronischer Systeme (CPMS): Development of cyber-physical mechatronic systems (CPMS), VDI/VDE-Richtlinien No. 2206, german/englisch, Beuth Verlag GmbH, Berlin.Google Scholar
Weidner, S., Kelleter, C., Sternberg, P., Haase, W., Geiger, F., et al. . (2018), “The implementation of adaptive elements into an experimental high-rise building”, Steel Construction, Vol. 11 No. 2, pp. 109117. https://doi.org/10.1002/stco.201810019.CrossRefGoogle Scholar