Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T12:28:52.607Z Has data issue: false hasContentIssue false

DESCRIPTIVE ATTRIBUTES OF ANALYSIS USE CASES IN THE DATA-DRIVEN VALIDATION OF ELEMENTS IN THE SYSTEM OF OBJECTIVES

Published online by Cambridge University Press:  19 June 2023

Steffen Wagenmann*
Affiliation:
TRUMPF Machine Tools SE+Co.KG; IPEK, Karlsruher Institute of Technology;
Felicia Weidinger
Affiliation:
TRUMPF Machine Tools SE+Co.KG;
Moritz Schöck
Affiliation:
IPEK, Karlsruher Institute of Technology;
Albert Albers
Affiliation:
IPEK, Karlsruher Institute of Technology;
Nikola Bursac
Affiliation:
Technical University of Hamburg
*
Wagenmann, Steffen, TRUMPF Machine Tools SE+Co.KG, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Usage data of reference systems can be analyzed in the development process for the validation of system elements. The process model for data-driven validation of elements in the system of objectives aids developers in performing such data analyses. The conducted studies show that the basis for an efficient analysis process is a common understanding of the system and the goal of the analysis. Therefore, a template was derived over the course of case studies describing the elements in the system of objectives. The template covers the three descriptive dimensions general information, technical system and data. It allows a comprehensive description of analysis use cases. On average it takes 11 minutes for developers to aggregate all necessary information and consequently fill out the template. An A/B-Test confirmed the comprehensibility and applicability of the template even for developers of different domain knowledge. Through its contribution to a sustainable knowledge management the template provides an added value for the developers for conducting analysis.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Albers, A.; Rapp, S.; Spadinger, M.; Richter, T.; Birk, C.; Marthaler, M. et al. (2019): Das Referenzsystem im Modell der PGE – Produktgenerationsentwicklung: Vorschlag einer generalisierten Beschreibung von Referenzprodukten und ihrer Wechselbeziehungen.Google Scholar
Albers, A. (2010): Five Hypotheses about Engineering Processes and their Consequences.Google Scholar
Albers, A.; Dumitrescu, R.; Gausemeier, J.; Riedel, O.; Stark, R. (2018): Advanced Systems Engineering – Eine Leitlinie zur Stärkung der Innovationskraft (acatech Kooperation).Google Scholar
Albers, A.; Lohmeyer, Q.; Ebel, B. (2011): Dimensions of objectives in interdisciplinary product development projects. In: ICED 11 - 18th International Conference on Engineering Design - Impacting Society Through Engineering Design 2, p. 256265.Google Scholar
Albers, A.; Behrendt, M.; Klingler, S.: Matros, K. (2016): Verifikation und Validierung im Produktentstehungsprozess. Handbuch Produktentwicklung, 1, p. 541569.CrossRefGoogle Scholar
Albers, A.; Rapp, S.; Birk, C.; Bursac, N. (2017): Die Frühe Phase der PGE – Produktgenerationsentwicklung.Google Scholar
Anderson, C. (2015): Creating a data-driven organization: Practical advice from the trenches: “O'Reilly Media, Inc.”.Google Scholar
Bharadwaj, N.; Noble, C. (2017): Finding innovation in data rich environments: Wiley Online Library (34) (5).CrossRefGoogle Scholar
Bissantz, N.; Hagedorn, J. (2009): Data Mining (Datenmustererkennung). In: Wirtschaftsinformatik 51 (1), p. 139144.Google Scholar
Blessing, L.; Chakrabarti, A. (2009): DRM, a Design Research Methodology. In: DRM, a Design Research Methodology. https://dx.doi.org/10.1007/978-1-84882-587-1.CrossRefGoogle Scholar
Bogner, E.; Voelklein, T.; Schroedel, O.; Franke, J. (2016). Study based analysis on the current digitalization degree in the manufacturing industry in Germany. Procedia Cirp, 57, p. 1419.CrossRefGoogle Scholar
Bursac, N.; Rapp, S.; Waldeier, L.; Wagenmann, S.; Albers, A.; Deiss, M.; Hettich, V. (2021): Anforderungsmanagement in der Agilen Entwicklung Mechatronischer Systeme - ein Widerspruch in sich?CrossRefGoogle Scholar
Duderstadt, J. (2007): Engineering for a changing road, a roadmap to the future of engineering practice, research, and education.Google Scholar
Heimicke, J.; Niever, M., Zimmermann, V.; Klippert, M.; Marthaler, F.; Albers, A. (2019): Comparison of existing agile approaches in the context of mechatronic system development: potentials and limits in implementation. In Proceedings of the Design Society: International Conference on Engineering Design (Vol. 1, No. 1, pp. 21992208). Cambridge University Press.CrossRefGoogle Scholar
Henfling, M. (1978): Lernkurventheorie: ein Instrument zur Quantifizierung von produktivitätssteigernden Lerneffekten. Lehmann.Google Scholar
LaValle, S.; Lesser, E.; Shockley, R.; Hopkins, M.; Kruschwitz, N. (2011): Big data, analytics and the path from insights to value. In: MIT sloan management review 52 (2), p. 2132.Google Scholar
Menon, R.; Tong, L.H.; Sathiyakeerthi, S. (2005): Analyzing textual databases usingdata mining to enable fast product development processes. In: Reliability Engineering & System Safety 88 (2), p. 171180.Google Scholar
Muschik, S. (2011): Development of Systems of Objectives in Early Product Engineering. Entwicklung von Zielsystemen in der frühen Produktentstehung. In: 16158113 50. https://dx.doi.org/10.5445/IR/1000023768.CrossRefGoogle Scholar
Thomke, S.; Reinertsen, D. (1998): Agile product development: Managing development flexibility in uncertain environments. In: California management review 41 (1), p. 830.Google Scholar
Wagenmann, S.; Bursac, N.; Rapp, S.; Albers, A. (2022a): Success Factors for the Validation of Requirements for New Product Generations–A Case Study on Using Field Gathered Data. In: Proceedings of the Design Society 2, p. 18051814.CrossRefGoogle Scholar
Wagenmann, S.; Krause, A.; Rapp, S.; Albers, A.; Sommer, L.; Bursac, N. (2022b): Application and Adaptation of a Process Model for the Data-Driven Validation of the System of Objectives.CrossRefGoogle Scholar