Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T12:51:04.841Z Has data issue: false hasContentIssue false

DECISION SUPPORT FRAMEWORK USING KNOWLEDGE BASED DIGITAL TWIN FOR SUSTAINABLE PRODUCT DEVELOPMENT AND END OF LIFE

Published online by Cambridge University Press:  19 June 2023

Chorouk Mouflih*
Affiliation:
1 Université de Technologie de Compiègne;
Raoudha Gaha
Affiliation:
1 Université de Technologie de Compiègne;
Alexandre Durupt
Affiliation:
1 Université de Technologie de Compiègne;
Magali Bosch-Mauchand
Affiliation:
1 Université de Technologie de Compiègne;
Kristian Martinsen
Affiliation:
2 Norwegian University of Science and Technology
Benoit Eynard
Affiliation:
1 Université de Technologie de Compiègne;
*
Mouflih, Chorouk, Laboratoire Roberval, France, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to have a sustainable disassembly process, a successful decision-making based on reliable and up-to-date information should be made while taking into consideration sustainability indicators. In this context, The aim of this paper is to introduce a decision support system based on knowledge based and digital twin in order to help stakeholders to choose the most sustainable disassembly scenario .In this research, firstly, we presented the state of art of disassembly process, digital twin, knowledge based system and the merging of knowledge based system and digital twin for disassembly. Secondly, we presented the knowledge based digital twin (KBDTw) system framework for a sustainable disassembly process. Thirdly, a case study is presented about the use of KBDTw in the end-of-life of internet boxes. Finally, a conclusion and future work are conducted.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Abdullah, T. A., Popplewell, K. and Page, C. J. (2003) “A review of the support tools for the process of assembly method selection and assembly planning”, International Journal of Production Research. Taylor & Francis Group, pp. 23912410. https://doi.org/10.1080/002075431000087265.CrossRefGoogle Scholar
Babbitt, C. W. et al. (2020) “Disassembly-based bill of materials data for consumer electronic products”, Scientific Data, pp. 18. https://doi.org/10.1038/s41597-020-0573-9.CrossRefGoogle Scholar
Simões-Marques, M., Nunes, I. (2022) “Application of a User-Centered Design Approach to the Definition of a Knowledge Base Development Tool”, 13th International Conference on Applied Human Factors and Ergonomics, USA, AHFE Open Access, rancisco, Rebelo and Marcelo, Soares (eds) Advances in Ergonomics In Design, Usability & Special Populations: Part II . https://doi.org/10.54941/ahfe1001259.CrossRefGoogle Scholar
Boschert, S. and Rosen, R. (2016) “Digital twin-the simulation aspect”, Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and Their Designers, Springer, Cham, pp. 5974. https://doi.org/10.1007/978-3-319-32156-1_5.Google Scholar
Cai, Y. et al. (2017) “Sensor Data and Information Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-physical Manufacturing”, Procedia Manufacturing. Elsevier B.V., pp. 10311042. https://doi.org/10.1016/j.promfg.2017.07.094.CrossRefGoogle Scholar
Das, S. K., Yedlarajiah, P. and Narendra, R. (2000) “An approach for estimating the end-of-life product disassembly effort and cost”, International Journal of Production Research, Vol. 38 No. 3, pp. 657673. https://doi.org/10.1080/002075400189356.CrossRefGoogle Scholar
Gaha, R., Durupt, A. and Eynard, B. (2020) “Towards the implementation of the Digital Twin in CMM inspection process: Opportunities, challenges and proposals”, Procedia Manufacturing, pp. 216221. https://doi.org/10.1016/j.promfg.2021.07.033.CrossRefGoogle Scholar
Grieves, M. and Vickers, J. (2017) “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems”, Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, Springer, pp. 85113. https://doi.org/10.1007/978-3-319-38756-7_4.CrossRefGoogle Scholar
Gungor, A. and Gupta, S. M. (1998) “Disassembly Sequence Planning for Products with Defective Parts in Product Recovery”, Computers and Industrial Engineering, Vol. 35 No. 1–2, pp. 161164. https://doi.org/10.1016/S0360-8352(98)00047-3.CrossRefGoogle Scholar
Haag, S. and Anderl, R. (2019) “Automated Generation of as-manufactured geometric representations for digital twins using STE”, Procedia CIRP, pp. 10821087. https://doi.org/10.1016/J.PROCIR.2019.04.305.CrossRefGoogle Scholar
Kostenko, D., Kudryashov, N., Maystrishin, M., Onufriev, V., Potekhin, V. and Vasilev, A. (2018) “Digital twin applications: Diagnostics, optimisation and prediction”, Annals of DAAAM and Proceedings of the International DAAAM Symposium, pp. 05740581. https://doi.org/10.2507/29th.daaam.proceedings.083.CrossRefGoogle Scholar
Kristensen, H. S. and Mosgaard, M. A. (2020) cA review of micro level indicators for a circular economy – moving away from the three dimensions of sustainability? ”, Journal of Cleaner Production, Vol. 10. https://doi.org/10.1016/J.JCLEPRO.2019.118531.Google Scholar
Ladj, A., Wang, Z., Meski, O., Belkadi, F., Ritou, M. and Da Cunha, C. (2021) “A knowledge-based Digital Shadow for machining industry in a Digital Twin perspective”, Journal of Manufacturing Systems, Vol. 58, Part B, pp. 168179. https://doi.org/10.1016/j.jmsy.2020.07.018.CrossRefGoogle Scholar
Lederer, J., Ongatai, A., Odeda, D., Rashid, H., Otim, S. and Nabaasa, M. (2015) “The generation of stakeholder's knowledge for solid waste management planning through action research: A case study from Busia, Uganda”, Habitat International, Vol. 50, pp. 99109. https://doi.org/10.1016/j.habitatint.2015.08.015.CrossRefGoogle Scholar
Liu, Q., Liu, Z., Xu, W., Tang, Q., Zhou, Z., and Truong Pham, D. (2019) “Human-robot collaboration in disassembly for sustainable manufacturing”, International Journal of Production Research, Vol. 57 No. 12, pp. 40274044. https://doi.org/10.1080/00207543.2019.1578906.CrossRefGoogle Scholar
Marconi, M., Germani, M., Mandolini, M., and Favi, C., (2018) “Applying data mining technique to disassembly sequence planning: a method to assess effective disassembly time of industrial products”, International Journal of Production Research, Vol. 57 No. 2, pp. 599623. https://doi.org/10.1080/00207543.2018.1472404.CrossRefGoogle Scholar
Mok, S. M., Wu, C. H. and Lee, D. T. (1999) “A hierarchical workcell model for intelligent assembly and disassembly”, Proceedings - 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1999, pp. 125130. https://doi.org/10.1109/cira.1999.809989.CrossRefGoogle Scholar
Mouflih, C., Gaha, R., Durupt, A. and Eynard, B. (2022) “Sustainable end of life for mechanical product: Literature review on sustainability indicators and dismantling processes”, in Proceedings Congrès Français de Mécanique 2022.Google Scholar
Ophéli, J. (2020) A Montauban, Orange reconditionne son matériel (Livebox, Décodeur TV,…). Available at: https://selectra.info/telecom/actualites/acteurs/orange-reconditionne-materiels (Accessed: 29 July 2022).Google Scholar
Parlikad, A. K. and McFarlane, D. (2007) “RFID-based product information in end-of-life decision making”, Control Engineering Practice, Vol. 15 No. 11, pp. 13481363. https://doi.org/10.1016/j.conengprac.2006.08.008.CrossRefGoogle Scholar
Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y. and Miller, A. (2019) “Language models as knowledge bases?”, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 24632473. https://doi.org/10.18653/v1/d19-1250.CrossRefGoogle Scholar
Poschmann, H., Brüggemann, H. and Goldmann, D. (2021) “Fostering End-of-Life Utilization by Information-driven Robotic Disassembly”, Procedia CIRP, Elsevier, pp. 282287. https://doi.org/10.1016/j.procir.2021.01.104.CrossRefGoogle Scholar
Reyes-Córdoba, A. P., Sharratt, P. N. and Arizmendi-Sánchez, J. A. (2008) “Contribution of knowledge management for the implementation of waste minimisation measures into process industries”, Process Safety and Environmental Protection, Vol. 86 No. 5, pp. 375388. https://doi.org/10.1016/j.psep.2008.02.002.CrossRefGoogle Scholar
Slama, I., Ben-Ammar, O., Dolgui, A. and Masmoudi, F. (2020) “Approches d'optimisation pour un problème de planification de désassemblage sous incertitude des délais de désassemblage”, Génie industriel et productique, Vol. 3. https://doi.org/10.21494/ISTE.OP.2020.0578.CrossRefGoogle Scholar
Terazono, A., Oguchi, M., Yoshida, A., Takigami, H., Agusa, T., Balles-teros, F.C. and Fujimori, T. (2012) “E-waste recycling in Asia: Process classification, environmental effect and knowledge sharing”, Proceeding 2012 Electronics Goes Green 2012+}, pp. 16.Google Scholar
Vanegas, P., Peeters, J., Cattrysse, D., Tecchio, P., Ardente, F., Mathieux, F., Dewulf, W. and Duflou, J. R. (2018) “Ease of disassembly of products to support circular economy strategies”, Resources, Conservation and Recycling, Vol. 135, pp. 323334. https://doi.org/10.1016/j.resconrec.2017.06.022.CrossRefGoogle Scholar
Vongbunyong, S., Kara, S. and Pagnucco, M. (2013) “Basic behaviour control of the vision-based cognitive robotic disassembly automation”, Assembly Automation, Vol. 33 No. 1, pp. 3856. https://doi.org/10.1108/01445151311294694.CrossRefGoogle Scholar
Wang, X. V. and Wang, L. (2019) “Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0”, International Journal of Production Research, Vol. 57 No. 12, pp. 38923902. https://doi.org/10.1080/00207543.2018.1497819.CrossRefGoogle Scholar
Wiendahl, H. P., Seliger, G.,Perlewitz, H.- and Bürkner, S. (1999) “A general approach to disassembly planning and control”, Production Planning and Control, Vol. 10 No. 8, pp. 718726. https://doi.org/10.1080/095372899232542.CrossRefGoogle Scholar
Xiang, F., Huang, Y., Zhang, Z. and Zuo, Y. (2020) “Digital twin driven energy-aware green design”, Digital Twin Driven Smart Design, Elsevier, pp. 165184. https://doi.org/10.1016/b978-0-12-818918-4.00006-3.CrossRefGoogle Scholar
Zaccaria, V., Stenfelt, M., Aslanidou, I., and Kyprianidis, , (2018) “Fleet monitoring and diagnostics framework based on digital twin of aero-engines”, Proceedings of the ASME Turbo Expo, Vol. 6. https://doi.org/10.1115/GT2018-76414.CrossRefGoogle Scholar
Zhang, M., Sui, F., Liu, A., & Tao, F. and Nee, A. (2020) “Digital twin driven smart product design framework”, Digital Twin Driven Smart Design. Academic Press, pp. 332. https://doi.org/10.1016/b978-0-12-818918-4.00001-4.CrossRefGoogle Scholar