No CrossRef data available.
Article contents
Assessing text-image patent datasets with text-based metrics for engineering design applications
Published online by Cambridge University Press: 16 May 2024
Abstract
Images provide concise representations of design artifacts and emerge as the primary mode of communication among innovators, engineers, and designers. The advanced of Artificial Intelligence tools which integrates image and textual information can significantly support the Engineering Design process. In this paper we create 5 different datasets combining both images and text of patents and we develop a set of text-based metrics to assess the quality of text for multimodal applications. Finally, we discuss the challenges arising in the development of multimodal patent datasets.
Keywords
- Type
- Artificial Intelligence and Data-Driven Design
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2024.