Article contents
APPLICATIONS OF ROTATIONAL MANIPULATORS IN THE MANUFACTURE AND CHARACTERIZATION OF HIGHLY CURVED THIN FILMS
Published online by Cambridge University Press: 19 June 2023
Abstract
What do common devices such as smartphones, CD’s and solar panels all have in common? They are all examples of innovative technology that is still limited to flat, rigid geometries. This is primarily due to the limitations of the manufacturing processes used to create components within these devices, key among them the thin polymer films produced through spin coating.
Spin coating is a technique used due to its ability to effectively create uniform films on the scale of micro or nanometres. However, it relies on a planar substrate to produce uniform layers, thus restricting the design of components manufactured using this process to simple, flat objects. As the requirement for curved device geometries expands, complex alternative fabrication methods are being implemented in industry.
For spin coating to remain relevant, a viable process for controlling the fluid flow over curved surfaces must be developed. This research investigates the hypothesis that coating distributions can be controlled through optimized rotation of a curved substrate. Where a multi-axis rotational manipulator and novel characterization system have been developed to investigate the fabrication of curved devices using the improved spin coating technique.
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2023. Published by Cambridge University Press
References
- 1
- Cited by