Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T17:12:35.007Z Has data issue: false hasContentIssue false

WHAT IS A DIGITAL TWIN? – DEFINITIONS AND INSIGHTS FROM AN INDUSTRIAL CASE STUDY IN TECHNICAL PRODUCT DEVELOPMENT

Published online by Cambridge University Press:  11 June 2020

J. Trauer*
Affiliation:
Technical University of Munich, Germany
S. Schweigert-Recksiek
Affiliation:
Technical University of Munich, Germany
C. Engel
Affiliation:
Viessmann Werke GmbH & Co. KG, Germany
K. Spreitzer
Affiliation:
Viessmann Werke GmbH & Co. KG, Germany
M. Zimmermann
Affiliation:
Technical University of Munich, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last two decades, a concept called Digital Twin has evolved rapidly. Yet, there is no unified definition of the term. Based on a literature study and an industrial case study, an overarching definition of Digital twins is presented. Three characteristics were identified – representation of a physical system, bidirectional data exchange, and the connection along the entire lifecycle. Further, three sub-concepts are presented, namely: Engineering Twin, Production Twin, and Operation Twin. The presented paper thus formulates a consistent and detailed definition of Digital Twins.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Bajaj, M., Cole, B. and Zwemer, D. (2016), “Architecture To Geometry - Integrating System Models With Mechanical Design”, in SPACE Conferences and Exposition: AIAA SPACE 2016, Long Beach, California. https://doi.org/10.2514/6.2016-5470CrossRefGoogle Scholar
Baltes, G. and Freyth, A. (2017), “Die radikal neuen Anforderungen unserer Zeit und die Konsequenz für Veränderungsarbeit”, in Baltes, G. and Freyth, A. (Eds.), Veränderungsintelligenz: Agiler, innovativer, unternehmerischer den Wandel unserer Zeit meistern / Guido Baltes, Antje Freyth (Hrsg.), Vol. 131, Springer Gabler, Wiesbaden, Germany, pp. 179. https://doi.org/10.1007/978-3-658-04889-1_1CrossRefGoogle Scholar
Banerjee, A. et al. (2017), “Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines”, paper presented at Workshop on Industrial Knowledge Graphs, co-located with the 9th International ACM Web Science Conference, June 25-28, 2017, Troy, NY, USA. https://doi.org/10.1145/3091478.3162383CrossRefGoogle Scholar
Bauernhansl, T. et al. (2016), WGP-Standpunkt Industrie 4.0, available at: https://www.ipa.fraunhofer.de/content/dam/ipa/de/documents/Presse/Presseinformationen/2016/Juni/WGP_Standpunkt_Industrie_40.pdf (accessed 31 October 2019).Google Scholar
Bazilevs, Y. et al. (2015), “Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data”, Journal of Applied Mechanics, Vol. 82 No. 9, p. 1149. https://doi.org/10.1115/1.4030795CrossRefGoogle Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer London, London. https://doi.org/10.1007/978-1-84882-587-1CrossRefGoogle Scholar
Boschert, S., Heinrich, C. and Rosen, R. (2018), “Next generation digital twin”, paper presented at TMCE 2018, May 7-11, 2018, Las Palmas de Gran Canaria, Spain.Google Scholar
Boschert, S. and Rosen, R. (2016), “Digital Twin—The Simulation Aspect”, in Hehenberger, P. and Bradley, D. (Eds.), Mechatronic futures: Challenges and solutions for mechatronic systems and their designers / Peter Hehenberger, David Bradley, editors, Springer, Switzerland, pp. 5974. https://doi.org/10.1007/978-3-319-32156-1_5Google Scholar
Boureanu, L. (2017), “From Customer Service to Customer Experience: The Drivers, Risks and Opportunities of Digital Transformation”, in Klewes, J., Popp, D. and Rost-Hein, M. (Eds.), Out-thinking organizational communications: The impact of digital transformation / Joachim Klewes, Dirk Popp, Manuela Rost-Hein, editors, Management for Professionals, Vol. 4, Springer, Switzerland, pp. 145-155. https://doi.org/10.1007/978-3-319-41845-2_11Google Scholar
Cadet, M. et al. (2017), “Referenzentwicklungsprozess für cybertronische Produkte und Produktionssysteme”, in Eigner, M. (Ed.), Modellbasierter Entwicklungsprozess cybertronischer Systeme, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 4562. https://doi.org/10.1007/978-3-662-55124-0_7CrossRefGoogle Scholar
Eckert, C., Isaksson, O., Hallstedt, S., Malmqvist, J., Öhrwall Rönnbäck, A. and Panarotto, M. (2019), “Industry Trends to 2040”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 21212128. https://doi.org/10.1017/dsi.2019.218Google Scholar
Eigner, M. et al. (2019), “Definition des Digital Twin im Produktlebenszyklus”, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, Vol. 114 No. 6, pp. 345350. https://doi.org/10.3139/104.112107CrossRefGoogle Scholar
Erikstad, S.O. (2017), “Merging Physics, Big Data Analytics and Simulation for the Next-Generation Digital Twins”, in Bertram, V. (Ed.), HIPER’17: 11th Symposium on High-Performance Marine Vehicles, Zevenwacht, September 11-13, 2017, Technical University Hamburg-Harburg, Hamburg, pp. 140150.Google Scholar
Grieves, M. and Vickers, J. (2017), “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems”, in Kahlen, F.-J., Flumerfelt, S. and Alves, A. (Eds.), Transdisciplinary perspectives on complex systems: New findings and approaches / Franz-Josef Kahlen, Shannon Flumerfelt, Anabela Alves, editors, Springer International Publishing, Switzerland, pp. 85113. https://doi.org/10.1007/978-3-319-38756-7_4CrossRefGoogle Scholar
Hanschke, I. (2018), Digitalisierung und Industrie 4.0 - einfach und effektiv, Carl Hanser Verlag GmbH & Co. KG, München. https://doi.org/10.3139/9783446452992CrossRefGoogle Scholar
Helu, M. and Hedberg, T. (2015), “Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed”, Procedia Manufacturing, Vol. 1. https://doi.org/10.1016/j.promfg.2015.09.066Google ScholarPubMed
Huber, D. and Kaiser, T. (2015), “Wie das Internet der Dinge neue Geschäftsmodelle ermöglicht”, HMD Praxis der Wirtschaftsinformatik, Vol. 52 No. 5, pp. 681689. https://doi.org/10.1365/s40702-015-0169-6CrossRefGoogle Scholar
Jones, D.E. et al. (2019), “Early Stage Digital Twins for Early Stage Engineering Design”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 25572566. https://doi.org/10.1017/dsi.2019.262Google Scholar
Kasote, S., Das, S. and Rao, S. (2017), “Adoption of Structural Analysis Capabilities in an IOT Based Scenario for Connected Assets”, in Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan, D.K., O'Neill, J. and Winckler, M. (Eds.), Human-computer interaction -- INTERACT 2017: 16th IFIP TC 13 International Conference, Mumbai, India, September 25-29, 2017, Proceedings. Part II / Regina Bernhaupt, Girish Dalvi, Anirudha Joshi, Devanuj K. Balkrishan, Jacki O'Neill, Marco Winckler (eds.), LNCS sublibrary. SL 3, Information systems and applications, incl. Internet/Web, and HCI, Vol. 10516, Springer, Cham, Switzerland, pp. 332335. https://doi.org/10.1007/978-3-319-68059-0_23CrossRefGoogle Scholar
Kritzinger, W. et al. (2018), “Digital Twin in manufacturing: A categorical literature review and classification”, IFAC-PapersOnLine, Vol. 51 No. 11, pp. 10161022. https://doi.org/10.1016/j.ifacol.2018.08.474CrossRefGoogle Scholar
Kuhn, T. (2017), “Digitaler Zwilling”, Informatik-Spektrum, Vol. 40 No. 5, pp. 440444. https://doi.org/10.1007/s00287-017-1061-2CrossRefGoogle Scholar
Lee, J., Jin, C. and Liu, Z. (2017), “Predictive Big Data Analytics and Cyber Physical Systems for TES Systems”, in Redding, L., Roy, R. and Shaw, A. (Eds.), Advances in through-life engineering services, Decision engineering, 1619-5736, Vol. 46, Springer, Cham, Switzerland, pp. 97112. https://doi.org/10.1007/978-3-319-49938-3_7Google Scholar
Lubell, J. et al. (2013), Model-Based Enterprise Summit Report. https://doi.org/10.6028/NIST.TN.1820CrossRefGoogle Scholar
Michels, J.S. (2018), “Industrial Connectivity And Industrial Analytics, Core Components of the Factory of the Future”, in Sendler, U. (Ed.), The Internet of Things: Industrie 4.0 unleashed / Ulrich Sendler, editor, Vol. 2015, Springer Vieweg, Berlin, pp. 247270. https://doi.org/10.1007/978-3-662-54904-9_15CrossRefGoogle Scholar
Piccolo, S.A., Trauer, J., Wilberg, J. and Maier, A.M. (2018), “Understanding task execution time in relation to the multilayer project structure. Empirical evidence”, in Leardi, C., Browning, T.R., Eppinger, S.D. and Becerril, L. (Eds.), DS 96: The 20th International DSM Conference, Trieste, Italy, October 15-17, 2018, Design Society, pp. 129138.Google Scholar
Riesener, M. et al. (2019), “The Digital Shadow as Enabler for Data Analytics in Product Life Cycle Management”, Procedia CIRP, Vol. 80, pp. 729734. https://doi.org/10.1016/j.procir.2019.01.083CrossRefGoogle Scholar
Schleich, B. et al. (2017), “Shaping the digital twin for design and production engineering”, CIRP Annals, Vol. 66 No. 1, pp. 141144. https://doi.org/10.1016/j.cirp.2017.04.040CrossRefGoogle Scholar
Schluse, M. and Rossmann, J. (2016), “From simulation to experimentable digital twins: Simulation-based development and operation of complex technical systems”, in ISSE 2016: 2016 International Symposium on Systems Engineering Edinburgh, Scotland, George Hotel, October 3-5, 2016 proceedings papers, Edinburgh, United Kingdom, 10/3/2016 - 10/5/2016, IEEE, Piscataway, NJ, pp. 16. https://doi.org/10.1109/SysEng.2016.7753162CrossRefGoogle Scholar
Schroeder, G. et al. (2016), “Visualising the digital twin using web services and augmented reality”, in Informatics, I.I.C.o.I. (Ed.), Proceedings, 2016 IEEE 14th International Conference on Industrial Informatics (INDIN): Palais des Congrès du Futuroscope, Futuroscope - Poitiers, France, 19-21 July, 2016, Poitiers, France, 7/19/2016 - 7/21/2016, IEEE, Piscataway, NJ, pp. 522527. https://doi.org/10.1109/INDIN.2016.7819217CrossRefGoogle Scholar
Schuh, G. and Blum, M. (2016), “Design of a data structure for the order processing as a basis for data analytics methods”, in Portland International Conference on Management of Engineering and Technology (PICMET), Honolulu, HI, USA, September 4-8, 2016, IEEE, pp. 21642169. https://doi.org/10.1109/PICMET.2016.7806715CrossRefGoogle Scholar
Schweigert-Recksiek, S. et al. (2020), “Conception of a Digital Twin in Mechanical Engineering: A Case Study in Technical Product Development”, Design 2020 17th International Design Conference, Dubrovnik, Croatia. (accepted)CrossRefGoogle Scholar
Shafto, M. et al. (2010), “Modeling, Simulation, Information Technology & Processing”, DRAFT Technology Roadmap Area Vol. 11, Washington, DC, available at: https://www.nasa.gov/pdf/501321main_TA11-MSITP-DRAFT-Nov2010-A1.pdf.Google Scholar
Siedlak, D.J.L. et al. (2018), “A digital thread approach to support manufacturing-influenced conceptual aircraft design”, Research in Engineering Design, Vol. 29 No. 2, pp. 285308. https://doi.org/10.1007/s00163-017-0269-0CrossRefGoogle Scholar
Stark, R. and Damerau, T. (2019), “Digital Twin”, in Chatti, S. and Tolio, T. (Eds.), CIRP Encyclopedia of Production Engineering, Vol. 66, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 18. https://doi.org/10.1007/978-3-642-35950-7_16870-1Google Scholar
Stark, R., Damerau, T. and Lindow, K. (2018), “Industrie 4.0—Digital Redesign of Product Creation and Production in Berlin as an Industrial Location”, in Sendler, U. (Ed.), The Internet of Things: Industrie 4.0 unleashed / Ulrich Sendler, editor, Springer Vieweg, Berlin, pp. 171186. https://doi.org/10.1007/978-3-662-54904-9_10CrossRefGoogle Scholar
Stark, R., Kind, S. and Neumeyer, S. (2017), “Innovations in digital modelling for next generation manufacturing system design”, CIRP Annals, Vol. 66 No. 1, pp. 169172. https://doi.org/10.1016/j.cirp.2017.04.045CrossRefGoogle Scholar
Tao, F. et al. (2019), “Digital twin-driven product design framework”, International Journal of Production Research, Vol. 57 No. 12, pp. 39353953. https://doi.org/10.1080/00207543.2018.1443229CrossRefGoogle Scholar
Trauer, J. et al. (2020), Data Driven Engineering – Definition and Insights from an Industrial Case Study, Submitted to Nord Design 2020.Google Scholar
West, T.D. and Blackburn, M. (2017), “Is Digital Thread/Digital Twin Affordable? A Systemic Assessment of the Cost of DoD's Latest Manhattan Project”, Procedia Computer Science, Vol. 114, pp. 4756. https://doi.org/10.1016/j.procs.2017.09.003CrossRefGoogle Scholar
Yun, S., Park, J.-H. and Kim, W.-T. (2017), “Data-centric middleware based digital twin platform for dependable cyber-physical systems”, in ICUFN (Ed.), ICUFN 2017: July 4 (Tue.)-July 7 (Fri.), 2017, Milan, Italy the Ninth International Conference on Ubiquitous and Future Networks, Milan, 7/4/2017 - 7/7/2017, IEEE, [Piscataway, NJ], pp. 922-926. https://doi.org/10.1109/ICUFN.2017.7993933CrossRefGoogle Scholar