This note studies the comparison of finite-buffer and nonexponential batch arrival systems of the form Gx/M/c/c + N with the corresponding systems, with N replaced by N', where N' can be smaller, larger, or infinite. If N' = ∞ the service times can be arbitrarily distributed. Both comparison and error bounds are obtained for performance measures such as the throughput, the idle probability, and the active server distribution. The results are of practical interest to establish computational reductions, either by infinite-space approximation or by reduced finite truncations. Two different proof techniques will be employed: the sample path approach and the Markov reward approach. The comparison of these two techniques is of interest in itself, showing the advantage and disadvantage of each.