Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T01:22:44.105Z Has data issue: false hasContentIssue false

Star-shaped order for distributions characterized by several parameters and some applications

Published online by Cambridge University Press:  28 September 2021

Idir Arab
Affiliation:
CMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal
Milto Hadjikyriakou
Affiliation:
School of Sciences, University of Central Lancashire, Pyla, Cyprus
Paulo Eduardo Oliveira
Affiliation:
CMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal
Beatriz Santos*
Affiliation:
CMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal
*
*Corresponding author. E-mail: [email protected]

Abstract

The star-shaped ordering between probability distributions is a common way to express aging properties. A well-known criterion was proposed by Saunders and Moran [(1978). On the quantiles of the gamma and F distributions. Journal of Applied Probability 15(2): 426–432], to order families of distributions depending on one real parameter. However, the lifetime of complex systems usually depends on several parameters, especially when considering heterogeneous components. We extend the Saunders and Moran criterion characterizing the star-shaped order when the multidimensional parameter moves along a given direction. A few applications to the lifetime of complex models, namely parallel and series models assuming different individual components behavior, are discussed.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arab, I. & Oliveira, P.E. (2019). Iterated failure rate monotonicity and ordering relations within Gamma and Weibull distribution. Probability in the Engineering and Informational Sciences 33(1): 6480. doi:10.1017/S0269964817000481CrossRefGoogle Scholar
Arab, I., Oliveira, P.E., & Hadjikyriakou, M. (2020). Failure rate properties of parallel systems. Advances in Applied Probability 52(2): 563587. doi:10.13140/RG.2.2.20919.98729CrossRefGoogle Scholar
Arriaza, A., Belzunce, F., & Martinez-Riquelme, C. (2021). Suffcient conditions for some transform orders based on the quantile density ratio. Methodology and Computing in Applied Probability 23(1): 2952. doi:10.1007/s11009-019-09740-6CrossRefGoogle Scholar
Barlow, R. & Proschan, F. (1975). Statistical theory of reliability and life testing: Probability models. New York-Montreal, Que.-London: Holt, Rinehart and Winston, Inc.Google Scholar
Belzunce, F., Pinar, J.F., Ruiz, J.M., & Sordo, M.A. (2013). Comparison of concentration for several families of income distributions. Statistics and Probability Letters 83(4): 10361045. doi:10.1016/j.spl.2012.12.025CrossRefGoogle Scholar
Cox, D. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology) 34(2): 187220.Google Scholar
Gupta, R.C., Gupta, P.L., & Gupta, R.D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics – Theory and Methods 27(4): 887904. doi:10.1080/03610929808832134CrossRefGoogle Scholar
Karlin, S. (1968). Total positivity, vol. 1. California: Stanford University Press.Google Scholar
Khaledi, B.-E. & Kochar, S. (2004). Ordering convolutions of gamma random variables. Sankhyā: The Indian Journal of Statistic 66(3): 466473.Google Scholar
Kochar, S. & Xu, M. (2011). On the skewness of order statistics in multiple-outlier models. Journal of Applied Probability 48(1): 271284. doi:10.1239/jap/1300198149CrossRefGoogle Scholar
Kochar, S. & Xu, M. (2011). The tail behaviour of the convolutions of gamma random variables. Journal of Statistical Planning and Inference 141(1): 418428. doi:10.1016/j.jspi.2010.06.019CrossRefGoogle Scholar
Kochar, S. & Xu, M. (2012). Some unified results on comparing linear combinations of independent gamma random variables. Probability in the Engineering and Informational Sciences 26(3): 393404. doi:10.1017/S0269964812000071CrossRefGoogle Scholar
Kochar, S. & Xu, M. (2014). On the skewness of order statistics with applications. Annals of Operations Research 212(1): 127138. doi:10.1007/s10479-012-1212-4CrossRefGoogle Scholar
Kotz, S., Balakrishan, N., & Johnson, N.L. (2000). Continuous multivariate distributions: Models and applications, 2nd ed., vol. 1. New York: John Wiley.CrossRefGoogle Scholar
Lane, W.R., Looney, S.W., & Wansley, J.W. (1986). An application of the Cox proportional hazards model to bank failure. Journal of Banking and Finance 10(4): 511531. doi:10.1016/S0378-4266(86)80003-6CrossRefGoogle Scholar
Marshall, A.W. & Olkin, I. (2007). Life distributions. New York: Springer.Google Scholar
Saunders, I. & Moran, P. (1978). On the quantiles of the gamma and F distributions. Journal of Applied Probability 15(2): 426432. doi:10.2307/3213414CrossRefGoogle Scholar
Shaked, M. & Shantikumar, J.G. (2007). Stochastic orders. New York: Springer.CrossRefGoogle Scholar
Tsodikov, A.D., Asselain, B., & Yakovlev, A.Y. (1997). A distribution of tumor size at detection: An application to breast cancer data. Biometrics 53(4): 1594–1502. doi:10.2307/2533515CrossRefGoogle ScholarPubMed