Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T01:20:14.848Z Has data issue: false hasContentIssue false

Covariances in Pólya urn schemes

Published online by Cambridge University Press:  08 October 2021

Hosam Mahmoud*
Affiliation:
Department of Statistics, The George Washington University, Washington, D.C. 20052, USA. E-mail: [email protected]

Abstract

By now there is a solid theory for Polya urns. Finding the covariances is somewhat laborious. While these papers are “structural,” our purpose here is “computational.” We propose a practicable method for building the asymptotic covariance matrix in tenable balanced urn schemes, whereupon the asymptotic covariance matrix is obtained by solving a linear system of equations. We demonstrate the use of the method in growing tenable balanced irreducible schemes with a small index and in critical urns. In the critical case, the solution to the linear system of equations is explicit in terms of an eigenvector of the scheme.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

To Robert Smythe, a mentor, coauthor and friend, on his 80th birthday

References

Athreya, K. & Karlin, S. (1968). Embedding of urn schemes into continuous time Markov branching processes and related limit theorems. The Annals of Mathematical Statistics 39: 18011817.10.1214/aoms/1177698013CrossRefGoogle Scholar
Bagchi, A. & Pal, A. (1985). Asymptotic normality in the generalized Pólya-Eggenberger urn model with applications to computer data structures. SIAM Journal on Algebraic and Discrete Methods 6: 394405.10.1137/0606041CrossRefGoogle Scholar
Bhutani, K., Kalpathy, R., & Mahmoud, H. (2021+). Degrees in random $m$-ary hooking networks (submitted).Google Scholar
Chauvin, B., Pouyanne, N., & Sahnoun, R. (2011). Limit distributions for large Pólya urns. The Annals of Applied Probability 21: 132.10.1214/10-AAP696CrossRefGoogle Scholar
Eggenberger, F. & Pólya, G. (1923). Über die statistik verketteter vorgänge. Zeitschrift für Angewandte Mathematik und Mechanik 1: 279289.10.1002/zamm.19230030407CrossRefGoogle Scholar
Ehrenfest, P. & Ehrenfest, T. (1907). Über zwei bekannte Einwände gegen das Boltzmannsche H-theorem. Physikalische Zeitschrift 8: 311314.Google Scholar
Freedman, D. (1965). Bernard Friedman's urn. The Annals of Mathematical Statistics 36: 956970.10.1214/aoms/1177700068CrossRefGoogle Scholar
Horn, R. & Johnson, C (1985). Matrix analysis. Cambridge, UK: Cambridge University Press.10.1017/CBO9780511810817CrossRefGoogle Scholar
Idriss, S. (2021). Nonlinear unbalanced urn models via stochastic approximation. Methodology and Computing in Applied Probability. doi:10.1007/s11009-021-09858-6.Google Scholar
Janson, S. (2004). Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Processes and Their Applications 110: 177245.10.1016/j.spa.2003.12.002CrossRefGoogle Scholar
Janson, S. (2006). Limit theorems for triangular urn schemes. Probability Theory and Related Fields 134: 417452.10.1007/s00440-005-0442-7CrossRefGoogle Scholar
Janson, S. (2020). Mean and variance of balanced Pólya urns. Advances in Applied Probability 52: 12241248.10.1017/apr.2020.38CrossRefGoogle Scholar
Janson, S. & Pouyanne, N. (2018). Moment convergence of balanced Pólya processes. Electrononic Journal of Probability 23: 113.Google Scholar
Johnson, N. & Kotz, S (1977). Urn models and their application. New York: John Wiley.Google Scholar
Kotz, S. & Balakrishnan, N. (1997). Advances in urn models during the past two decades. In N. Balakrishnan (ed.), Advances in Combinatorial Methods and Applications to Probability and Statistics. Boston, MA: Birkhäuser, pp. 203–257.10.1007/978-1-4612-4140-9_14CrossRefGoogle Scholar
Mahmoud, H (2008). Pólya urn models. Orlando, FL: Chapman-Hall.10.1201/9781420059847CrossRefGoogle Scholar
Pouyanne, N. (2008). An algebraic approach to Pólya processes. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 44: 293323.10.1214/07-AIHP130CrossRefGoogle Scholar
Smythe, R. (1996). Central limit theorems for urn models. Stochastic Processes and Their Applications 65: 115137.10.1016/S0304-4149(96)00094-4CrossRefGoogle Scholar
Zhang, P., Chen, C., & Mahmoud, H. (2015). Explicit characterization of moments of balanced triangular Pólya urns by an elementary approach. Statistics & Probability Letters 96: 149153.10.1016/j.spl.2014.09.016CrossRefGoogle Scholar