Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T00:06:02.273Z Has data issue: false hasContentIssue false

AN IMPROVED TEST OF THE SQUARED SHARPE RATIO

Published online by Cambridge University Press:  13 January 2020

Wan-Yi Chiu*
Affiliation:
Department of Finance, National United University, Taiwan, Republic of China E-mail: [email protected]

Abstract

The sample squared Sharpe ratio (SSR) is a critical statistic of the risk-return tradeoff. We show that sensitive upper-tail probabilities arise when the sample SSR is employed to test the mean-variance efficiency under different test statistics. Assuming the error's normality with a nonzero mean, we integrate the sample SSR and the arbitrage regression into a noncentral chi-square (χ2) test. We find that the distribution of the sample SSR based on the regression error is to the left of the F-distribution when assuming the returns' normality. Compared to two benchmarks that use the noncentral F-distribution and the central F-statistic, the χ2-statistic is more effective, competitive, significant, and locally robust when used to reject the upper-tailed mean-variance efficiency test using the usual parameters (sample size, portfolio size, and SSR).

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abhyankar, A., Basu, D., & Stremme, A. (2012). The optimal use of return predictability: an empirical study. Journal of Financial and Quantitative 47(5): 9731001.CrossRefGoogle Scholar
2.Affleck-Graves, J. & McDonald, B. (1989). Nonnormalities and tests of asset pricing theories. Journal of Finance 44(4): 889908.CrossRefGoogle Scholar
3.Britten-Jones, M. (1999). The sampling error in estimating of mean-variance efficient portfolio weights. Journal of Finance 54(2): 655671.CrossRefGoogle Scholar
4.DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?. Review of Financial Studies 22(5): 19151953.CrossRefGoogle Scholar
5.Elton, E.J. & Gruber, M.J. (1977). Risk reduction and portfolio size: an analytic solution. Journal of Business 50(4): 415437.CrossRefGoogle Scholar
6.Evans, J.L. & Archer, S.H. (1968). Diversification and the reduction of dispersion: an empirical analysis. Journal of Finance 23(5): 761767.Google Scholar
7.Frazzini, A., Kabiller, D., & Pedersen, L.H. (2018). Buffett's alpha. Financial Analysts Journal 74(4): 3555.CrossRefGoogle Scholar
8.Green, R.C. & Hollifield, B. (1992). When will mean-variance efficient portfolios be well diversified?. Journal of Finance 47(5): 17851809.CrossRefGoogle Scholar
9.Gibbons, M.R., Ross, S.A., & Shanken, J. (1989). A test of the efficiency of a given portfolio. Econometrica 57(5): 11211152.CrossRefGoogle Scholar
10.Jobson, J.D. & Korkie, B. (1980). Estimation for Markowitz efficient portfolios. Journal of the American Statistical Association 75(371): 544554.CrossRefGoogle Scholar
11.Jobson, J.D. & Korkie, B. (1983). Statistical inference in two-parameter portfolio theory with multiple regression software. Journal of Financial and Quantitative Analysis 18(2): 189197.CrossRefGoogle Scholar
12.Kan, R. & Smith, D.R. (2007). The distribution of the sample minimum-variance frontier. Management Science 54(7): 13641380.CrossRefGoogle Scholar
13.Kan, R. & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative 42(3): 621656.CrossRefGoogle Scholar
14.Kourtis, A. (2016). The Sharpe ratio of estimated efficient portfolios. Finance Research Letters 17: 7278.CrossRefGoogle Scholar
15.Kwon, Y.K. (1985). Derivation of the capital asset pricing model without normality or quadratic preference: a note. Journal of Finance 40(5): 15051509.CrossRefGoogle Scholar
16.MacKinlay, A.C. & Richardson, M. (1991). Using generalized method of moments to test mean-variance efficiency. Journal of Finance 46(2): 511527.CrossRefGoogle Scholar
17.Marie-Claude, D., Jean-Marie, B. & Lynda, K. (2007). Multivariate tests of mean-variance efficiency with possibly non-Gaussian errors: an exact simulation-based approach. Journal of Business and Economic Statistics 25: 398410.Google Scholar
18.Okhrin, Y. & Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econometrics 134(1): 235256.CrossRefGoogle Scholar
19.Peñaranda, F. (2016). Understanding portfolio efficiency with conditioning information. Journal of Financial and Quantitative 51(3): 9851011.CrossRefGoogle Scholar
20.Richardson, M. (1993). A test for multivariate normality in stock returns. Journal of Business 66(2): 295321.CrossRefGoogle Scholar
21.Seber, G.A.F. (1977). Linear regression analysis. New York: John Wiley & Sons.Google Scholar
22.Sharpe, W.F. (1966). Mutual fund performance. Journal of Business 39: 119138.Google Scholar
23.Statman, M. (1987). How many stocks make a diversified portfolio?. Journal of Financial and Quantitative Analysis 22(3): 353363.CrossRefGoogle Scholar
24.Tang, G.Y.N. (2004). How efficient is naive portfolio diversification? An educational note. Omega 32: 155160.CrossRefGoogle Scholar
25.Zhou, G. (1993). Asset-pricing tests under alternative distributions. Journal of Finance 48(5): 19271942.CrossRefGoogle Scholar