Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:16:05.164Z Has data issue: false hasContentIssue false

ADJUSTED VITERBI TRAINING

Published online by Cambridge University Press:  08 August 2007

Jüri Lember
Affiliation:
Tartu University Tartu 50409, Estonia E-mail: [email protected]
Alexey Koloydenko
Affiliation:
School of Mathematical Sciences University of Nottingham Nottingham, NG7 2RD, UK E-mail: [email protected]

Abstract

Viterbi training (VT) provides a fast but inconsistent estimator of hidden Markov models (HMM). The inconsistency is alleviated with a little extra computation when we enable VT to asymptotically fix the true values of the parameters. This relies on infinite Viterbi alignments and associated with them limiting probability distributions. First in a sequel, this article is a proof of concept; it focuses on mixture models, an important but special case of HMM where the limiting distributions can be calculated exactly. A simulated Gaussian mixture shows that our central algorithm (VA1) can significantly improve the accuracy of VT with little extra cost. Next in the sequel, we present elsewhere a theory of the adjusted VT for the general HMMs, where the limiting distributions are more challenging to find. Here, we also present another, more advanced correction to VT and verify its fast convergence and high accuracy; its computational feasibility requires additional investigation.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)