Published online by Cambridge University Press: 18 August 2021
In this paper, we develop a novel game theoretic model of the interactions between an EDoS attacker and the defender based on a signaling game that is a dynamic game of incomplete information. We then derive the best defense strategies for the network defender to respond to the EDoS attacks. That is, we compute the perfect Bayesian Nash Equilibrium (PBE) of the proposed game model such as the pooling PBE, separating PBE and mixed strategy PBE. In the pooling equilibrium, each type of the attacker takes the same action and the attacker's type is not revealed to the defender, whereas in the separating equilibrium, each type of the attacker uses different actions and hence the attacker's type is completely revealed to the defender. On the other hand, in the mixed strategy PBE, both the attacker and the defender randomize their strategies to optimize their payoffs. Numerical illustration is also presented to show the efficacy of the proposed model.