Article contents
Comparing the Variability of Random Variables and Point Processes
Published online by Cambridge University Press: 27 July 2009
Abstract
In this paper we compare the variance of functions of random variables and functionals of point processes. Specifically we give sufficient conditions on two random variables X and Y under which the variances var f(X) and var f(Y) of the function f of these random variables can be compared. For example we show that if X is smaller than Y in the shifted-up mean residual life and in the usual stochastic order, then var f(X) ≤ var f(y) for all increasing convex functions f, whenever these variances are well defined. In the context of point processes we compare the variances var Φ(M) and var Φ(N) of the functional Φ of two point processes M = {M(t), t ≥ 0} and N = {N(t), t ≥ 0}. We provide sufficient conditions under which these variances can be compared. Specifically we consider comparisons between (i) two renewal processes and between (ii) two (homogeneous or nonhomogeneous) Poisson processes. For example we show that for any nonhomogeneous Poisson process N with a rate function bounded from above by λ and from below by μ and two homogeneous Poisson processes L and M with rates λ and μ, respectively, var Φ (L) ≤ var Φ (N) ≤ var Φ (M) for any functional Φ that is increasing directionally convex in the event times, whenever these variances are well defined. This, for example, implies that if Tnis the nth event time of N, then n/λ2 ≤ var (Tn) ≤ n/μ2. Some applications of these results are given.
- Type
- Research Article
- Information
- Probability in the Engineering and Informational Sciences , Volume 12 , Issue 4 , October 1998 , pp. 425 - 444
- Copyright
- Copyright © Cambridge University Press 1998
References
- 15
- Cited by