Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T02:54:49.139Z Has data issue: false hasContentIssue false

The Medical Significance of the Narcotic SomsanitR During Disasters

Published online by Cambridge University Press:  17 February 2017

W. Heller
Affiliation:
Chirurgische Universitätskliniken, Tübingen, West Germany
G. Köhler
Affiliation:
Chirurgische Universitätskliniken, Tübingen, West Germany

Extract

Major disasters, during which large numbers of injured must be hospitalized, require specific medical measures. To obtain the most efficient results, the simplest means must be used at the site of the disaster to provide: the prevention of pain and shock; the maintenance of vital metabolic functions; the administration of local and general anesthesia; and the medical supervision of the transport of critically injured and the post-operative care of the patients. It must be taken into account that the use of non-physicians to help anesthesiologists may be necessary. These individuals work under the direction of the physician.

Pain relief must be provided by sedatives and analgesics which cause minimal central respiratory depression, no increased stimulation to cardiac patients, and no increase in intracranial pressure in head injuries. An additional requirement is that no unwieldly apparatus is required. These criteria are met with the narcotic, sodium-4-hydroxybutyrate (SomsanitR).

In 1950, Roberts and Frankel (1) investigated the effects of gamma-aminobutyric acid (GABA) on the regulating system for the sleep rhythm of the mammalian cerebrum. Two years later, Roberts and his co-workers (2-4) showed that GABA is reduced in the brain by a specific transaminase to a semial-dehyde of succinic acid (succinylsemialdehyde) and this, in turn, is reduced to a dehydrogenase, which is probably identical with lactate dehydrogenase, to gamma- or 4-hydroxybutyric acid. Since parenterally administered amino butyric acid is unable to pass through the blood-brain barrier, Laborit and his team (5,6) searched for derivatives which could reach the central nervous system via the cardiovascular system and found that 4-hydroxy-butyric acid has this property.

Type
Section Three—Definitive Medical Care
Copyright
Copyright © World Association for Disaster and Emergency Medicine 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Roberts, E, Frankel, S. Glytamic acid decarboxylase in brain. J Biol Chem 1950; 188:789.Google Scholar
2 Roberts, E. Formation and utilization of gamma-aminobutyric acid in brain. Progress in Neurol 1956; 1:11.Google ScholarPubMed
3 Roberts, E, Baxter, C. Metabolic studies of gamma-aminobutyric acid. Neurology 1958; 8 Suppl 1:77.Google Scholar
4 Roberts, E, Rothstein, M, Baxter, C. Some metabolic studies of gamma-aminobutyric acid. Proc Soc Exp Biol Med 1958; 97:796.CrossRefGoogle ScholarPubMed
5 Laborit, H, Jounay, J, Gerard, I, et al. Generalites concernant 1'etude experimentale et l'emploi clinique du gamma-hydroxybutyrate de Natrium. Rev Agressologie 1960; 1(4):397.Google Scholar
6 Laborit, H, Jounay, J, Gerard, I, et al. Sur un substrat metabolique a l'action centrale inhibitrice le 4-hydroxybutyrate de Na. La Presse Med 1960; 68:1867.Google Scholar
7 Fishbein, W, Bessman, SP, Bessman, N. Gamma-hydroxybutyrate in mammalian brain. J Biol Chem 1964; 239:35.Google Scholar
8 Bessman, SP, Bessman, N, Skolnik, I. Gamma-hydroxybutyrate and gamma-butyrolactone; concentration in rat tissues during anesthesia. Science 1964; 143:1045.Google Scholar
9 Roos, D. Diskussionsbeitrag in Bd. 68 Anästhesiologie und Wiederbelebung. Berlin: Springer, 1973.Google Scholar
10 Drasnov, TP, Kruglov, NA. Der Einfluss des 4-oxybuttersäuren Natrium auf die Hemmung des ZNS bei schmerzhaften Reizungen. Ref in Pharm Ind 1966; 28:697.Google Scholar
11 Bushart, W. Electrophysiologische und Klinisch-neurologische Befunde bei Narkosen mit gamma-Hydroxybuttersaure. In, Rittmeyer, P und Bushart, W. Berlin:Springer, 1973.Google Scholar
12 Schoeppner, H, Sitzer, G, Rolf, R, et al. Natrium-4-Hydroxibuturat-Procain Basis-anästhesiologie für die Kiefer-Hals-Chirurgie. Ref. beim 8. Weltkongress für Anästhesiologie, Hamburg, 1980.Google Scholar
13 Curjukanov, VV. Der Einfluss des oxybuttersauren Natrium auf die Erregungsleitung in den afferenten Wegen des N. splanchnicus. Ref in Pharm Ind 1967; 29:83.Google Scholar
14 Hoffmann, DR. Gamma-hydroxybuttersaure und ihre Auswirkungen auf die Serumenzyme, Serumelektrolyte und den Energiestoffwechsel wahrend Narkose. Inaugural-Dissertation, Eberhard-Karls-Universität, Tübingen 1976.Google Scholar
15 Heller, W, Hoffman, D, Junger, H, et al. Gamma-Hydroxibuttersaure-Ihre A us wirkungen auf Serum. In, Frey, R. Berlin-Springer, 1978.Google Scholar
16 Junger, H, Bader, R, Schorer, R. Kreislauf, Blutgase und Säure-Basen-Haushalt bei Dauerbeatmungspatienten mit Gamma-Hydroxybuttersaure. In, Frey, R. Berlin:Springer, 1978.Google Scholar
17 Kammerer, K, Hammer, Ph. Elektrolyte und Säure-Basen-Haushalt bei Dauerbeatmungspatienten mit Gamma-Hydroxibuttersaure. In, Frey, R. Berlin:Springer, 1978.Google Scholar
18 Knitza, R, Steingass, U, Wilhelm, WD. Metaboliche und hormonelle Veranderungen wahrend Operation in einer intra venösen Kombinationsanaesthesie bei Luftbeatmung. Wehrmed Wschr 1979; 10:305.Google Scholar
19 Vree, TB, Damsma, J, Bogert, AG, et al. Pharmacokinetics of 4-Hydroxybutyric acid in Man, Rhesus Monkey and Dog. In, Frey, R. Berlin:Springer, 1978.Google Scholar
20 Bogert, AG, Vree, TB, Kleijn, E, et al. Pharmacokinetics of 4-Hydroxybutyric Acid used as a sedative in the Intensive Care Unit. In, Frey, R (ed.). Berlin:Springer, 1978.Google Scholar