Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:00:33.507Z Has data issue: false hasContentIssue false

X-ray powder diffraction study of ZnGa2Te4

Published online by Cambridge University Press:  05 March 2012

Rashmi*
Affiliation:
X-ray Analysis, Materials Characterization Division, National Physical Laboratory Dr. K. S. Krishnan Marg, New Delhi 110 012, India
U. Dhawan*
Affiliation:
X-ray Analysis, Materials Characterization Division, National Physical Laboratory Dr. K. S. Krishnan Marg, New Delhi 110 012, India
*
a)Electronic mail: [email protected]
a)Electronic mail: [email protected]

Abstract

ZnGa2Te4 was found to crystallize in a defect tetrahedral structure with possible space group I4(82) with Z=2. Complete X-ray powder diffraction data were obtained and the unit cell parameters a and c and X-ray density were calculated. These were a=0.5930(1) nm, c=1.1859(3) nm, and Dx=5.7×103 kg/m3.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR CrossRefGoogle Scholar
Georgobiani, A. N., Radaustan, S. I., and Tiginyanu, I. M. (1985). “Wide-gap AIIB2IIIC4VI semiconductors: Optical and photoelectric properties, and potential applications (review),” Sov. Phys. Semicond. SPSEAX 19, 121132. sos, SPSEAX Google Scholar
Hanada, T., Izumi, F., Nakamura, Y., Nittono, O., Huang, Q., and Santoro, A. (1998). “Neutron and electron diffraction studies of ZnGa2Se4,Physica B PHYBE3 241–243, 373375. phb, PHYBE3 Google Scholar
Henry, N. F. M., and Lonsdale, K., eds. (1952). International Tables for X-ray Crystallography, Vol. 1 Symmetry Group (Kynoch, Birmingham).Google Scholar
Lowe-Ma, C. K., and Vanderah, T. A. (1991). “Structure of ZnGa2S4, a defect sphalerite derivative,” Acta. Crystallogr. Sect. C: Cryst. Struct. Commun. ACSCEE 47, 919924. acg, ACSCEE CrossRefGoogle Scholar
Okamoto, T., Miyashita, T., Yamada, A., Konagai, M., and Takahashi, K. (1994). “Formation of ZnGa2Se4 epitaxial layer during molecular beam epitaxial growth of Ga2Se3 on ZnSe,” Jpn. J. Appl. Phys., Part 2 JAPLD8 33, L1059L1062. jjc, JAPLD8 CrossRefGoogle Scholar
Parthé (1964). Crystal Chemistry of Tetrahedral Structures (Gordon & Breach, London).Google Scholar
Rashmi, , and Suri, D. K. (2000). “X-ray powder diffraction study of CuInSeTe,” Powder Diffr. PODIE2 15, 6568. pdj, PODIE2 CrossRefGoogle Scholar
Shay, J. L., and Wernick, T. H. (1975). Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon, Oxford).CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. acr, JACGAR CrossRefGoogle Scholar
Veliev, R. K., and Aldzhanov, M. A. (1985). “Low temperature heat capacity of ZnGa2S4, ZnGa2Se4, and ZnGa2Te4 thiogallates,” Phys. Status Solidi A PSSABA 19, K23K24. psa, PSSABA CrossRefGoogle Scholar
Woolley, J. C., and Ray, B. (1960). “Effects of solid solution of Ga2Te3 with AIIBVI tellurides,” J. Phys. Chem. Solids JPCSAW 16, 102106. jpx, JPCSAW CrossRefGoogle Scholar