Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T05:54:12.741Z Has data issue: false hasContentIssue false

X-ray powder diffraction study of the thermal behavior of barium titanium citrate hydrate

Published online by Cambridge University Press:  10 January 2013

D. Louër
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Groupe de Cristallochimie, Avenue du Général Leclerc, 35042 Rennes cedex, France
J. M. Criado
Affiliation:
Instituto de Ciencias de Materiales (CSIC), Américo Vespucio s/n, 41092 Sevilla, Spain
M. J. Dianez
Affiliation:
Instituto de Ciencias de Materiales (CSIC), Américo Vespucio s/n, 41092 Sevilla, Spain
L. A. Perez-Maqueda
Affiliation:
Instituto de Ciencias de Materiales (CSIC), Américo Vespucio s/n, 41092 Sevilla, Spain

Abstract

The thermal decomposition of barium bis(citrato)oxotitanate citrate heptahydrate, a molecular precursor of BaTiO3 fine powders is studied by temperature-dependent x-ray powder diffraction and thermogravimetry. A thorough investigation of the dehydration stage is presented. Three crystalline phases containing seven, three, and two water molecules, respectively, are identified from their powder diffraction pattern. The results of pattern indexing are presented and discussed in terms of parameter relationships.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A., and Louër, D. (1991). “Indexing of Powder Diffraction Patterns for Low Symmetry Lattices by the Successive Dichotomy Method,” J. Appl. Crystallogr. 24, 987.CrossRefGoogle Scholar
Day, V. W., Eberspacher, T. A., Klemperer, W. G., and Liang, S. (1995). “Synthesis and Characterization of BaTi(OC 6H 5)6.2DMF, a Single-Source Sol–Gel Precursor to BaTiO 3 Gels, Powders, and Thin Films,” Chem. Mater. 7, 1607.CrossRefGoogle Scholar
Henning, D., and Mayr, W. (1978). “Thermal Decomposition of (BaTi) Citrates into Barium Titanate,” J. Solid State Chem. 26, 329.CrossRefGoogle Scholar
Hutchins, G. A., Maher, G. H., and Ross, S. D. (1987). “Control of the Ba:Ti Ratio of BaTiO 3 at a Value of Exactly One via Conversion to BaO.TiO 2.3C 6H 8O 7.3H 2O,Am. Ceram. Soc. Bull. 66, 681.Google Scholar
Louër, D., Boultif, A., Gotor, F. J., and Criado, J. M. (1990). “X-ray Powder Diffraction Analysis of Barium Titanyl Oxalate Tetrahydrate,” Powder Diffr. 5, 162.CrossRefGoogle Scholar
Louër, D., and Langford, J. I. (1988). “Peak Shape and Resolution in Conventional Diffractometry with Monochromatic X-rays,” J. Appl. Crystallogr. 21, 430.CrossRefGoogle Scholar
Louër, M., Louër, D., Gotor, F. J., and Criado, J. M. (1991). “Crystal Structure of Barium Titanyl Oxalate BaTiO(C 2O 4)2.4.5H 2O,J. Solid State Chem. 92, 565.CrossRefGoogle Scholar
Pechini M. P. (1961). “Barium Titanium Citrate, Barium Titanate and Processes for Producing Same,” U.S. Patent No. 2985506, May 23.Google Scholar
Plévert, J., Auffrédic, J. P., Louër, M., and Louër, D. (1989). “Time-Resolved Study by X-ray Powder Diffraction with Position-Sensitive Detector: Rate of the β-Cs 2CdI 4 Transformation and the Effect of Preferred Orientation,” J. Mater. Sci. 24, 1913.CrossRefGoogle Scholar
Rajendra, M., and Subba Rao, M. (1994). “Formation of BaTiO 3 from Citrate Precursor,” J. Solid State Chem. 113, 239.Google Scholar