Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T13:39:28.687Z Has data issue: false hasContentIssue false

X-ray powder diffraction study of K3H(SO4)2

Published online by Cambridge University Press:  10 January 2013

G. V. Narasimha Rao
Affiliation:
Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India
T. Sakuntala
Affiliation:
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Abstract

The structure of K3H(SO4)2 is found to be monoclinic with space group C2/c based on analogy of the powder X-ray diffraction pattern with that of the Rb3H(SO4)2. The lattice parameters are a=14.6984(7), b=5.6840(2), c=9.7834(5) Å, and β=103.004(5)°, Vol=796.39(5); Dx=2.589 gcm−3, Z=4, and I/Icor=1.30.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., and Evans, H. T., Jr. (1973). “Indexing and Least-Squares Refinement of Powder Diffraction Data,” NTIS Document No. PB-216188, released by NTIS, 5285 Port Royal Road, Springfield, VA 22151.Google Scholar
Catti, M., Ferraris, G., and Ivaldi, G. (1979). “A very short and asymmetrical hydrogen bond in the structure of Na 3H(SO 4)2 and S-OH vs O-H…O correlation,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 35, 525529.CrossRefGoogle Scholar
Davis, B. L., and Johnson, L. R. (1984). “The true unit cell of Ammonium Hydrogen sulphate, (NH 4)3H(SO 4)2,” J. Appl. Crystallogr. 17, 331.CrossRefGoogle Scholar
Fortier, S., Fraser, M. E., and Heyding, R. D. (1985). “Structure of Trirubidium Hydrogenbis(sulfate), Rb 3H(SO 4)2,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 41, 11391141.CrossRefGoogle Scholar
Gesi, K. (1980). “Dielectric properties and phase transitions in X 3H(SO 4)2 and X 3D(SO 4)2 crystals (X: K, Rb),” J. Phys. Soc. Jpn. 48, 886889.CrossRefGoogle Scholar
Narasimha Rao, G. V., Sastry, V. S., Gopalakrishna Murthy, H. S., Seshagiri, V., and Radhakrishnan, T. S. (1996). “Toward development of an ideal X-ray diffractometer sample holder,” Powder Diffr. 11, 200203.CrossRefGoogle Scholar
Noda, Y., Ychiyama, S., Kafuku, K., Kasatani, H., and Terauchi, H. (1990). “Structure analysis and hydrogen bond character of K 3H(SO 4)2,” J. Phys. Soc. Jpn. 59, 28042810.CrossRefGoogle Scholar
Parry and Glasser. (1960).Google Scholar
Sakuntala, T., and Arora, A. K. (1998). “Pressure induced decomposition of KHSO4,” in Proc. Joint AIRAPT-16 and HPCJ-38, International Conf. on High Pressure Science and Technology, edited by M. Nakahara.Google Scholar
Suzuki, S., and Makita, Y. (1978). “The crystal structure of Tri-ammonium hydrogen disulphate (NH 4)3H(SO 4)2,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34, 732.CrossRefGoogle Scholar
Wu, E. (1989). “POWD, an Interactive program for powder diffraction data interpretation and indexing,” J. Appl. Crystallogr. 22, 506510.CrossRefGoogle Scholar