Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T03:49:21.775Z Has data issue: false hasContentIssue false

X-ray powder diffraction study of CuInSeTe

Published online by Cambridge University Press:  10 January 2013

Rashmi*
Affiliation:
X-ray Analysis, Materials Characterization Division, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110 012, India
D. K. Suri
Affiliation:
X-ray Analysis, Materials Characterization Division, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110 012, India
*
a)Electronic mail: [email protected]

Abstract

CuInSeTe was synthesized by the melt and anneal technique. The compound crystallized in the chalcopyrite structure having space group I4¯2d with Z=4. Complete X-ray powder diffraction data were obtained and the unit cell parameters a and c, X-ray density and u parameter were calculated. These are a=0.5987(1) nm, c=1.1979(4) nm, Dx=5.96×103kg/m3, and u=0.2498. Atomic positions in the unit cell are proposed.© 2000 International Centre for Diffraction Data.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Diaz, R., and Leon, M. (1993). “Study of band gap and band levels of Cu–In–Se–Te thin films compounds,” J. Vac. Sci. Technol. A 11, 199204.CrossRefGoogle Scholar
Diaz, R., and Leon, M. (1995). “Effect of the composition and anion vacancies in the band gap and band levels of Cu–In–Se–Te thin films,” J. Vac. Sci. Technol. A 13, 28032807.CrossRefGoogle Scholar
Diaz, R., Leon, M., and Reuda, F. (1992). “Characterization of Cu–In–Se–Te system in thin films grown by thermal evaporation,” J. Vac. Sci. Technol. A 10, 295300.CrossRefGoogle Scholar
International Tables for X-ray Crystallography, Vol. 1 Symmetry Group, edited by N. F. M. Henry and K. Lonsdale (Kynoch Press, Birmingham, 1952).Google Scholar
Leon, M., Diaz, R., and Rueda, F. (1994). “Composition effects in flash evaporated CuIn(Se xTe 1−x)2 films,” J. Vac. Sci. Technol. A 12, 30823086.CrossRefGoogle Scholar
Leon, M., Van Tendeloo, G., and Diaz, R. (1988). “A structural investigation of CuInSeTe by electron microscopy and X-ray techniques,” J. Microsc. Spectrosc. Electron. 13, 99110.Google Scholar
Quintero, M., Tovar, R., Guerrero, E., Sanchez, F., and Wooley, J. C. (1991). “T(z) phase diagram of the CuIn(Se xTe 1−x)2 alloys,” Phys. Status Solidi A 125, 161166.CrossRefGoogle Scholar
Shay, J. L., and Wernick, T. H. (1975). Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon, Oxford).CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Soliman, L. I. (1994). “Some physical properties of the compounds CuInSeTe, CuInSeS, and CuInSTe thin films,” Indian J. Pure Appl. Phys. 32, 166170.Google Scholar
Sridevi, D., and Reddy, K. V. (1985). “Preparation and characterization of CuInSe 2(1−x)Te 2 solid solutions,” Mater. Res. Bull. 20, 929934.CrossRefGoogle Scholar
Suri, D. K., Nagpal, K. C., and Chadha, G. K. (1989). “X-ray study of CuGa xIn 1−xSe 2 solid solutions,” J. Appl. Crystallogr. 22, 578583.CrossRefGoogle Scholar