Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T10:17:32.506Z Has data issue: false hasContentIssue false

X-ray powder diffraction data of AII(ZnXVO4)2 compounds (A=Sr, Ba; X=P, As)

Published online by Cambridge University Press:  10 January 2013

F. Lucas
Affiliation:
Laboratoire de Cristallochimie du Solide, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
A. Elfakir
Affiliation:
Laboratoire de Cristallochimie du Solide, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
M. Quarton
Affiliation:
Laboratoire de Cristallochimie du Solide, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract

Two new arsenates with general formula AII(ZnAsO4)2 (A=Sr, Ba) were synthetized by solid state reaction. Furthermore, a high pressure form of Ba(ZnPO4)2 was obtained under hydrothermal conditions. Indexing of their X-ray diffractograms was carried out with a monoclinic unit-cell and space group P21/c. These compounds are isostructural with Sr(ZnPO4)2 and the paracelsian form of Ba(AlSiO4)2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakakin, V., Rylov, G., and Alekseev, V. (1975). “Refinement of the crystal structure of horlbathite CaBe 2P 2O 8,” Sov. Phys. Crystallogr. 19, 798805.Google Scholar
Blum, D., Durif, A., and Averbuch-Pouchot, M. T. (1986). “Crystal structures of three forms of CsZnPO 4,” Ferroelectrics 69, 283292.CrossRefGoogle Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 1, 108109.CrossRefGoogle Scholar
Dragoo, A. L. (1990). “Standart reference materials for X-ray diffraction. I. Overview of current and future standart reference materials,” JCPDS 61, 16.Google Scholar
El Bali, B., Boukhari, A., Aride, J., and Abraham, F. (1993). “The crystal structure of SrNi 2(PO 4)2,” J. Solid State Chem. 194, 453459.CrossRefGoogle Scholar
Elouadi, B., Elammari, L., and Ravez, J. (1984). “A new ferroelectric phosphate family,” Ferroelectrics 56, 1720.CrossRefGoogle Scholar
Flaningen, E. M., Lok, B. M., Patton, R. L., and Wilson, S. T. (1986). New Developments in Zeolite Science and Technology, edited by Y. Murakami (Elsevier, Amsterdam).Google Scholar
Gibbs, G. V., Louisnathan, S. J., Ribbe, P. H., and Phillips, M. W. (1974). “Semiempirical molecular orbital calculations for the atoms of the tetrahedral framework in anorthite, low albite, maximum microline and reedmergnerite,” in The Fedspars, edited by W. S. Mackenzie and J. Zussman (Manchester University Press, Manchester), pp. 49–67.Google Scholar
Hemon, A., and Courbion, G. (1990). “The crystal structure of α-SrZn 2(PO 4)2. A hurlbutite type,” J. Solid State Chem. 85, 164168.CrossRefGoogle Scholar
Hoffman, M. V. (1965). “The systems BaOMgOP 2O 5 and BaOZnOP 2O 5. Compounds and fluorescence,” J. Electrochem. Soc. 110, 12231227.CrossRefGoogle Scholar
Jakerman, R., and Cheethman, A. (1988). “Combined single-crystal X-ray diffraction and magic angle spinning NMR study of α-CaZn 2(PO 4)2,” J. Am. Chem. Soc. 110, 11401143.CrossRefGoogle Scholar
Jaulmes, S., Wallez, G., Elfakir, A., and Quarton, M. (1993). “Crystal and structure determination of the monoarsenate CsBeAsO 4,” Eur. J. Solid State Inorg. Chem. 30, 10071015.Google Scholar
Lindbloom, J. T., Gibbs, G. V., and Ribbe, P. H. (1974). “The crystal structure of hurlbutite. A comparison with dandurite and anorthite,” Am. Mineral. 59, 12671271.Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. C. (1981). NBS*AIDS83 is a development of “NBS*AIDS80, A FORTRAN program for crystallographic data evaluation,” U.S. Natl. Bur. Stand. Technical Note No. 1141.Google Scholar
Sarver, J. F., Hoffman, M. V., and Hummel, F. A. (1961). “Phase equilibria and tin-activated luminescence in strontium orthophosphate systems,” J. Electrochem. Soc. 108, 11031110.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32, 751753.CrossRefGoogle Scholar
Smith, G. J., and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Szostak, R. (1989). Molecular Sieves. Principles of Synthesis and Identification (Van Nostrand, New York).CrossRefGoogle Scholar
Tackeuchi, Y. (1958). “A detailed investigation of the structure of hexagonal BaAl 2Si 2O 8 with reference to his α–β inversion,” Mineral. J. Sapporo 2, 311332.Google Scholar
Wallez, G., Jaulmes, S., Elfakir, A., and Quarton, M. (1994). “Un nouveau phosphate ferroélectrique,” J. Phys. III 4, 11971204.Google Scholar
Wallez, G., Jaulmes, S., Elfakir, A., and Quarton, M. (1995). “Stereochemical activity of Thallium (I) lone pair in the trydimite-related compounds TlBePO 4 and TlBeAsO 4,” J. Solid State Chem. 114, 123128.CrossRefGoogle Scholar