Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T04:44:43.185Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for the ternary phases W5As2.5P1.5 and Ni4Nb5P4

Published online by Cambridge University Press:  10 January 2013

P. Bénard-Rocherullé*
Affiliation:
Université de Rennes I, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS-Université No. 6511, Avenue du Général Leclerc, 35042 Rennes Cedex, France
S. Députier
Affiliation:
Université de Rennes I, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS-Université No. 6511, Avenue du Général Leclerc, 35042 Rennes Cedex, France
F. Charki
Affiliation:
Université de Rennes I, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS-Université No. 6511, Avenue du Général Leclerc, 35042 Rennes Cedex, France
R. Guérin
Affiliation:
Université de Rennes I, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS-Université No. 6511, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*
a)Author to whom correspondence should be addressed: Electronic mail: Patricia.Bé[email protected]

Abstract

The two ternary phases W5As2.5P1.5 and Ni4Nb5P4 have been investigated by X-ray powder diffraction. Precise data for the two compounds were collected using CuKα1 radiation over the range 11°–140° 2θ. Unit cell refinements (space group I4/m) led to a=9.4729(3) Å, c=3.2414(2) Å (Dx=13.16 gcm−3) with M20=127, F30=91(0.0092,36) for W5As2.5P1.5 and a=9.9304(4) Å, c=3.5243(3) Å (Dx=7.87 gcm−3) with M20=179, F30=138(0.0068,32) for Ni4Nb5P4.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A., and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 21, 987993.CrossRefGoogle Scholar
Berger, R., Phavanantha, P., and Mongkolsuk, M. (1980). “New ternary phosphides of the Nb 5Cu 4Si 4 type,” Acta Chem. Scand. 34, 77.CrossRefGoogle Scholar
Chaichit, N., Chalugune, P., Rukvichai, S., Choosang, P., Kaewchansilp, V., Pontchour, C., Phavanantha, P., and Pramatus, S. (1978). “Crystal structure refinements of ZrCoP, NbCoP, NbNiP and TaTeP,” Acta Chem. Scand. 32, 309311.CrossRefGoogle Scholar
Charki, F., Députier, S., Bénard-Rocherullé, P., Guérin, R., and El Ghadraoui, E. H. (1997). “W 5As 2.5P 1.5: The first one-dimensional vertex-linked W 6 cluster,” J. Solid State Chem. 131, 310316.CrossRefGoogle Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
DIFFRAC-AT, version V3.3 (1993). PROFILE user's guide from Socabim, Siemens Analytical X-ray Systems, Inc., Karlsruhe, Germany.Google Scholar
Gandberger, E. (1968). “Die kristallstruktur von Nb 5Cu 4Si 4,Monatsch. Chem. 99, 549556.CrossRefGoogle Scholar
Guérin, R. (1976). “Nouveaux arséniures et phosphures ternaires de molybdène ou de tungstène et d’éléments 3d, à chaînes métal-métal: structures et propriétés,” Thèse d’Etat, Rennes, France.CrossRefGoogle Scholar
Guillou, N., Auffrédic, J. P., and Louër, D. (1995). “The early stage of crystallite growth of CeO 2 obtained from a cerium oxide nitrate,” Powder Diffr. 10, 235240.CrossRefGoogle Scholar
Jensen, P., and Kjekshus, A. (1966). “The crystal structure of Mo 5As 4,Acta Chem. Scand. 20, 13091313.CrossRefGoogle Scholar
Langford, J. I. (1992). “The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition,” in Accuracy in Powder Diffraction II, edited by E. Prince and J. K. Stalick (NIST Spec. Pub. No. 846, Gaithersburg), pp. 110–126.Google Scholar
Louër, D. (1991). “Indexing of powder diffraction patterns,” Mater. Sci. Forum 79–82, 1726.CrossRefGoogle Scholar
Louër, D., and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr. 21, 430437.CrossRefGoogle Scholar
Louër, D., and Louër, M. (1972). “Méthode d’essais et d’erreurs pour l’indexation automatique des diagrammes de poudre,” J. Appl. Crystallogr. 5, 271275.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS*AIDS80: A FORTRAN Program for Crystallographic Data, US Natl. Bur. Stand. Tech. Note No 1141, p. 54. (NBS*AIDS83 is an expanded version of NBS*AIDS80).Google Scholar
PDF-2 database, JCPDS-International Centre for Diffraction Data, Newtown Square, PA.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “F(N): a criterion for rating powder diffraction patterns and evaluating the reliability of powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar