Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T01:32:32.791Z Has data issue: false hasContentIssue false

X–Ray Powder Diffraction Data for Synthetic Varieties of Tetrahedrite

Published online by Cambridge University Press:  10 January 2013

Neil E. Johnson
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A.

Abstract

A series of five synthetic tetrahedrite-group minerals has been prepared and examined using powder X-ray diffraction in order to update current powder data and provide a validation test of cell dimension prediction equations. The tetrahedrites (nominally (Cu10X2)Sb4S13 with X = Zn, Cd, Mn, Hg and Fe) have the following properties: zincian tetrahedrite, a = 10.3833 (1) Å, Dx = 4.974 (1) g/cm3, F30 = 264 (0.004, 31), M20 = 279; cadmian tetrahedrite, a = 10.5066 (1) Å, Dx = 5.073 (1) g/cm3, F30 = 208 (0.004, 37), M20 = 249; manganoan tetrahedrite, a = 10.4384 (1) Å, Dx = 4.822 (1) g/cm3, F30 = 274 (0.003, 33), M20 = 302; mercurian tetrahedrite, a = 10.5071 (1) Å, Dx = 5.570 (1) g/cm3, F30 = 150 (0.006, 35), M20 = 156; ferroan tetrahedrite, a = 10.3630 (1) Å, Dx = 5.002 (1) g/cm3, F30 = 253 (0.004, 33), M20 = 281. The experimental unit cell dimensions obtained in this study are in excellent agreement with calculated values produced using regression equations developed previously.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E. & Evans, H. T. Jr (1973). Job 9214: Indexing and least-squares refinement of powder diffraction data. Document PB2-16188. U.S. National Technical Information Service.Google Scholar
Basu, K., Bortnikov, N. S., Mookherjee, A., Mozgova, N. N., Svitsov, A. V., Tsepin, A. I. & Vrubevskaja, Z. V. (1984). Neues Jahrb. Mineral., Abh. 149, 105112.Google Scholar
Benoit, P.H. (1987). Am. Mineral. 72, 10181019.Google Scholar
Berry, L.G. & Thompson, R.M. (1962). X-Ray powder data for ore minerals: The Peacock Atlas. GSA Memoirs 85. New York: Geol. Soc. Amer.Google Scholar
Burkhart-Baumann, I. (1984). Neues Jahrb. Mineral., Abh. 150, 587590.Google Scholar
Charlat, M. & Lévy, C. (1975). Bull. Soc. Française Mineral. Cristall. 98, 152158.Google Scholar
DeWolff, P. M. (1968). J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Johnson, N. E., Craig, J. R. & Rimstidt, J. D. (1986). Can. Mineral. 24, 385397.Google Scholar
Johnson, N. E., Craig, J. R. & Rimstidt, J. D. (1987). Can. Mineral. 25, 237244.Google Scholar
Kullerud, G. (1971). In Research Techniques for High Pressure and High Temperature, ed. Ulmer, G. C., 288315. New York: Springer-Verlag.Google Scholar
Machatschki, F. (1928). Zeit. Krist. 68, 204222.Google Scholar
McCarthy, G.J. (1988). Pow. Diff. 3, 3940.CrossRefGoogle Scholar
Smith, G. S. & Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Tatsuka, K. & Morimoto, N. (1977). Am. Mineral. 62, 11011109.Google Scholar