Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T12:59:01.441Z Has data issue: false hasContentIssue false

X-ray powder diffraction analysis of the incommensurate modulated structure of Bi2Sr2CaCu2O8

Published online by Cambridge University Press:  10 January 2013

D. P. Matheis
Affiliation:
Institute of Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802
R. L. Snyder
Affiliation:
Institute of Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802

Abstract

X-ray powder diffraction is a convenient tool for monitoring changes in structural parameters due to modifications in sample composition and processing conditions. Due to the complexity of incommensurate modulated structures powder diffraction techniques have not been commonly applied. Programs ALSQ and QRIET have been produced to perform lattice parameter and structure refinements on incommensurate modulated materials with a displacive modulation model. In applying these programs to the Bi2Sr2CaCu2O8 superconductor which has this type of structure, it is shown that a decrease in the lattice parameters and an increase in the modulation vector occurs as the Ca content of the Bi-2212 phase, controlled by the use of the glass ceramic process, increases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beskrovnyi, A., Dlouha, M., Jirak, Z., Vratislav, S., and Pollert, E. (1990a). Physica C 166, 7986.CrossRefGoogle Scholar
Beskrovnyi, A., Dlouha, M., Jirak, Z., and Vratislav, S. (1990b). Physica C 171, 1924.CrossRefGoogle Scholar
DeWolff, P. M. (1974). Acta Crystallogr. A 30, 777785.CrossRefGoogle Scholar
DeWolff, P. M. (1977). Acta Crystallogr. A 33, 493497.CrossRefGoogle Scholar
DeWolff, P. M., Janssen, T., and Janner, A. (1981). Acta Crystallogr. A 37, 625636.CrossRefGoogle Scholar
Eibl, O. (1990). Physica C 169, 441–50.CrossRefGoogle Scholar
Gao, Y., Lee, P., Coppens, P., Subramanian, M., and Sleight, A. (1988). Science 241, 954.CrossRefGoogle Scholar
Howard, S. A., and Snyder, R. L. (1989). J. Appl. Crystallogr. 22, 238243.CrossRefGoogle Scholar
Hubbard, C. R., Lederman, S. M., and Pyrros, N. P. (1982). U.S. Natl. Bureau of Standards.Google Scholar
Imai, K., Nakai, I., Kawashima, T., Sueno, S., and Ono, A. (1988). Jpn. J. Appl. Phys. Lett. 27, L1661.CrossRefGoogle Scholar
James, R. W. (1948). Optical Principles of the Diffraction of X-rays (Bell, London), pp. 114.Google Scholar
Janner, A., and Ascher, E. (1970). Physica 46, 162.CrossRefGoogle Scholar
Janner, A., and Janssen, T. (1979). Phys. Rev. B 15, 643.CrossRefGoogle Scholar
Kajitani, T., Kusaba, K., Kikuchi, M., Kobayashi, N., Syonon, N., Williams, T., and Hirabayashi, M. (1988). Jpn. J. Appl. Phys. Lett. 27, L587.CrossRefGoogle Scholar
LePage, Y., McKinnon, W., Tarascon, J., and Barboux, P. (1989). Phys. Rev. B 40, 6810.CrossRefGoogle Scholar
Matheis, D. P., and Snyder, R. L. (1990). Powder Diffr. 5, 825.CrossRefGoogle Scholar
Matheis, D. P., Misture, S. T., and Snyder, R. L. (1993a). Physica C 207, 134142.CrossRefGoogle Scholar
Matheis, D. P., Misture, S. T. and Snyder, R. L. (1993b) Physica C (in press).Google Scholar
Petricek, V.Coppens, P., and Becker, P. (1985). Acta Crystallogr. A 41, 478483.CrossRefGoogle Scholar
Petricek, V., and Coppens, P. (1988a). Acta Crystallogr. A 44, 235239.CrossRefGoogle Scholar
Petricek, V., and Coppens, P. (1988b). Acta Crystallogr. A 44, 10511055.CrossRefGoogle Scholar
Petricek, V., Gao, Y., Lee, P., and Coppens, P. (1990). Phys. Rev. B 42, 387392.CrossRefGoogle Scholar
Rietveld, H. M. (1967). Acta Crystallogr. 22, 151–52.CrossRefGoogle Scholar
Rietveld, H. M. (1969). J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Ruddlesden, S., and Popper, P. (1957). Acta Crystallogr. 10, 538.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L., J. Appl. Crystallogr. 12, 6065 (1979).CrossRefGoogle Scholar
Subramanian, M., Torardi, C., Calabrese, J., Gopalakrishnan, J., Morrissey, K., Askew, T., Flippen, R., Chowdry, U., and Sleight, A. (1988). Science 239, 1015.CrossRefGoogle Scholar
Sunshine, S., Siegrist, T., Schneemeyer, L., Murphy, D., Cava, R., Batlogg, B., van Dover, R., Fleming, R., Glarum, S., Nakara, S., Farrow, R., Krajewski, J., Zahurak, S., Waszczak, J., Marshall, J., Marsh, P., Rupp, L., and Peck, W. (1988). Phys. Rev. B 38, 893.CrossRefGoogle Scholar
Tarascon, J., Le Page, Y., and McKinnon, W. (1990). Eur. J. Solid State Inorg. Chem. 27, 81.Google Scholar
Torardi, C., Parisi, J., Subramanian, M., and Sleight, A. (1989). Physica C 157, 115.CrossRefGoogle Scholar
Wiles, D. B., and Young, R. A. (1981). J. Appl. Crystallogr. 14, 149–51.CrossRefGoogle Scholar
Yamamoto, A., Onoda, M., Takayama-Muromachi, E., Izumi, F., Ishigaki, T., and Asano, H. (1990). Phys. Rev. B Condens. Matter 42(7), 4228–39.CrossRefGoogle Scholar
Yamamoto, A. (1991). Nippon Kessho Gakkaishi 32(4), 229233.CrossRefGoogle Scholar
Zandbergen, H., Groen, W., Mijlhoff, F., van Tendeloo, G., and Amelinckx, S. (1988). Physica C 156, 325.CrossRefGoogle Scholar