Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T17:08:07.074Z Has data issue: false hasContentIssue false

X-ray powder diffraction analysis of the heteropoly-molybdate (MoO2)0.5PMo14O42

Published online by Cambridge University Press:  06 March 2012

L. Marosi
Affiliation:
Departamento de Química, Universidad de las Islas Baleares, 07071 Palma de Mallorca, Spain
J. Cifré
Affiliation:
Departamento de Química, Universidad de las Islas Baleares, 07071 Palma de Mallorca, Spain
C. Otero Areán*
Affiliation:
Departamento de Química, Universidad de las Islas Baleares, 07071 Palma de Mallorca, Spain
*
a)Author to whom correspondence should be addressed: C. Otero Areán, Departamento de Química, Universidad de las Islas Baleares, 07071 Palma de Mallorca, Spain, Electronic mail: [email protected], Fax: (+34) 971 173426.

Abstract

The new heteropoly blue compound (MoO2)0.5PMo14O42, which is relevant in the context of catalytic activity of heteropoly-molybdates, was prepared by controlled thermolysis of (NH4)3PMo12O40 at 730 K in a nitrogen atmosphere. Powder X-ray diffraction analysis showed that this compound has a cubic unit cell, space group Pn3m (No. 224), with ao=11.795(2) Å, Z=2 and DXR=4.2466 g cm−3. Computer modeling and Rietveld analysis of powder diffraction patterns led to a proposed structure of the corresponding Keggin-cage unit PMo14O42.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrows, J. N., Jameson, G. B., and Pope, M. T. (1985). “Structure of a heteropoly blue. The four electron reduced β–12-molybdophosphate anion,” J. Am. Chem. Soc. JACSAT 113, 17711775. acs, JACSAT CrossRefGoogle Scholar
Boeyens, J. C. A., McDougal, J. G., and Smith, J. R. (1976). “Crystallographic study of the ammonium-potassium 12-molybdophosphate ion-exchange system,” J. Solid State Chem. JSSCBI 18, 191199. jss, JSSCBI CrossRefGoogle Scholar
Brown, G. M., Noe-Spirlet, M. R., Busing, W. R., and Levy, H. A. (1977). “Dodecatungstophosphoric acid hexahydrate. The true structure of Keggin’s pentahydrate from single crystal X-ray and neutron diffraction data,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 33, 10381046. acb, ACBCAR CrossRefGoogle Scholar
Casañ-Pastor, N., Gomez-Romero, P., Jameson, B. G., and Baker, L. (1991). “Crystal structures of α-(CoW12O40)6− and its heteropoly blue 2e reduced product, α-(CoW12O40)8−. Structural, electronic and chemical consequences of electron delocalization in a multiatom mixed-valence system,” J. Am. Chem. Soc. JACSAT 113, 56585663. acs, JACSAT CrossRefGoogle Scholar
Clark, C. J., and Hall, D. (1976). “Dodecamolybdophosphoric acid circa 30-hydrate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 32, 15451547. acb, ACBCAR CrossRefGoogle Scholar
D’Amour, H., and Allmann, H. (1976). “Ein Kegginkomplex mit erniedrigter pseudosymmetrie in der struktur des H3(PMo12O40)(13-14)H2O,Z. Kristallogr. ZEKRDZ 143, 113. zek, ZEKRDZ CrossRefGoogle Scholar
De Wolff, P. M. (1968). ”A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR CrossRefGoogle Scholar
Greenwood, N. N., and Earnshaw, A. (1984). Chemistry of the Elements (Pergamon, Oxford).Google Scholar
Ichida, H., Kobayashi, A., and Sasaki, Y. (1980). “The structure of tetraguanidinium dodecamolybdosilicate monohydrate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 36, 132137. acb, ACBCAR CrossRefGoogle Scholar
Ilkenhans, T., Herzog, B., Brown, T., and Schlögl, R. (1995). “The nature of the active phase in the heteropolyacid catalyst H4PVMo11O40⋅32H2O used for the selective oxidation of isobutyric acid,” J. Catal. JCTLA5 153, 275292. jtl, JCTLA5 CrossRefGoogle Scholar
Inumaru, K., Ono, A., Kubo, H., and Misono, M. (1998). “Catalysis by heteropoly compounds. The structure and redox behavior of vanadium species in molybdovanadophosphoric acid catalysts during partial oxidation of isobutane,” J. Chem. Soc., Faraday Trans. JCFTEV 94, 17651770. jcf, JCFTEV CrossRefGoogle Scholar
Kato, R., Kobayashi, A., and Sasaki, Y. (1982). “The heteropolyvanadate of phosphorus. Crystallographic and NMR studies,” Inorg. Chem. INOCAJ 21, 240246. ino, INOCAJ CrossRefGoogle Scholar
Keggin, J. F. (1934). “The structure and formula of 12-phosphotungstic acid,” Proc. R. Soc. London, Ser. A PRLAAZ 144, 75100. prz, PRLAAZ Google Scholar
Marosi, L., Cox, G., Tenten, A., and Hibst, H. (2000). “In situ XRD investigations of heteropolyacid catalysts in the methacrolein to methacrylic acid oxidation reaction: Structural changes during the activation/deactivation process,” J. Catal. JCTLA5 194, 140145. jtl, JCTLA5 CrossRefGoogle Scholar
Marosi, L., and Otero Areán, C. (2003). “Catalytic performance of Csx(NH4)yHzPMo12O40 and related heteroplyacids in the methacrolein to methacrylic acid conversion: in situ structural study of the formation and stability of the catalytically active species,” J. Catal. JCTLA5 213, 235240. jtl, JCTLA5 CrossRefGoogle Scholar
Mizuno, N., and Misono, M. (1998). “Heterogeneous catalysis,” Chem. Rev. (Washington, D.C.) CHREAY 98, 199217. chr, CHREAY CrossRefGoogle ScholarPubMed
Pope, M. T. (1983). Heteropoly and Isopoly Oxomolybdates (Springer Verlag, Berlin), Chap. 6.Google Scholar
Pope, M. T., and Müller, A. (1994). Polyoxometalates: From Platonic Solids to Anti-retroviral Activity (Kluwer, Amsterdam).CrossRefGoogle Scholar
Shimizu, S., Ichihashi, H., and Nagai, K. (1986). U. S. Pat. 4,565,801 (Sumitomo Chemical Company).Google Scholar