Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T19:38:29.715Z Has data issue: false hasContentIssue false

X-ray powder diffraction analysis of K3Nb3WO9(AsO4)2

Published online by Cambridge University Press:  01 March 2012

S. Belkhiri
Affiliation:
Laboratoire Sciences des Matériaux Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumedienne (USTHB), Bp 32 El Alia 16111 Bab Ezzouar-Alger, Algérie
D. Mezaoui
Affiliation:
Laboratoire Sciences des Matériaux Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumedienne (USTHB), Bp 32 El Alia 16111 Bab Ezzouar-Alger, Algérie
H. Rebbah
Affiliation:
Laboratoire Sciences des Matériaux Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumedienne (USTHB), Bp 32 El Alia 16111 Bab Ezzouar-Alger, Algérie
S. Ouhenia*
Affiliation:
Laboratoire de Physique, Faculté des Sciences et Sciences de l’ingénieur, Université de Bejaia, Béjaia 06000, Algérie
M. A. Belkhir
Affiliation:
Laboratoire de Physique, Faculté des Sciences et Sciences de l’ingénieur, Université de Bejaia, Béjaia 06000, Algérie
*
a)Electronic mail: [email protected]

Abstract

K3Nb3WO9(AsO4)2 has been investigated by means of X-ray powder diffraction. Powder diffraction data were obtained by conventional diffractometer with Kα radiation. Unit-cell dimensions were determined by an indexing program based on variation of parameters by successive dichotomies. An orthorhombic cell (space group Pnma) was found with a=15.001 (1) Å, b=14.814(1) Å, c=7.2374 (8) Å, and V=1608.4 (4) A3. The figures of merit were calculated to be M(20)=35.9 and F(20)=70.8 (0.0055,51).

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. D., Layland, R., and Payen, C. (1996). “A new manganese ortho-arsenate. The synthesis, structure and magnetic properties of Ba2Mn(AsO4)2,” Polyhedron PLYHDE 15, 12351239.Google Scholar
Alberti, G. and Constantino, U. (1996). Comprehensive Supramolecular Chemistry Vol. 7, Solid-State Supramolecular Chemistry: Two- and Three-Dimensional Inorganic Networks, edited by Alberti, G. and Bein, T. (Pergamon-Elsevier, Oxford), pp. 123.Google Scholar
Berrah, F., Mezaoui, D., Guesdon, A., Borel, M. M., Leclaire, A., Provost, J., and Raveau, B. (1998). “Two closely related intersecting tunnel structures: The monophosphates K3V1.4W2.6O9(PO4)2 and K3Nb3WO9(AsO4)2,” Chem. Mater. CMATEX 10, 543549.Google Scholar
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889891006441 24, 987993.Google Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Centi, G., Trifiro, F., Ebner, J. R., and Franchetti, V. M. (1988). “Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide,” Chem. Rev. (Washington, D.C.) CHREAY 10.1021/cr00083a003 88, 5580.Google Scholar
Clearfield, A. (1988). “Role of ion exchange in solid-state chemistry,” Chem. Rev. (Washington, D.C.) CHREAY 10.1021/cr00083a003 88, 125148.CrossRefGoogle Scholar
Haushalter, R. C. and Mundi, L. A. (1992). “Reduced molybdenum phosphates: Octahedral-tetrahedral framework solids with tunnels, cages, and micropores,” Chem. Mater. CMATEX 10.1021/cm00019a012 4, 3148.Google Scholar
Laugier, J. and Bochu, B. (2001). CHEKCELL <http://www.inpg.Fr/LMGP>..>Google Scholar
Louër, D. and Louër, M. (1972). “Méthode d’essais et erreurs pour l’indexation automatique des diagrammes de poudre,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889872009483 5, 271275.CrossRefGoogle Scholar
Louër, D. and Vargas, R. (1982). “Indexation automatique des diagrammes de poudre par dichotomies successives,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889882012552 15, 542545.CrossRefGoogle Scholar
Piffard, Y., Verbaere, A., Oyetola, S., Deniard-Courant, S., and Tournoux, M. (1989). “Properties and applications of perovskite-type oxides,” Eur. J. Solid State Inorg. Chem. EJSCE5 26, 113127.Google Scholar