Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T15:26:43.815Z Has data issue: false hasContentIssue false

X-ray powder data for MgMnSiO4 and Mg0.6Mn1.4SiO4

Published online by Cambridge University Press:  05 March 2012

S. Yamazaki*
Affiliation:
Ceramics Research Laboratory, Nagoya Institute of Technology, Asahigaoka, Tajimi 507-0071, Japan
H. Toraya*
Affiliation:
Ceramics Research Laboratory, Nagoya Institute of Technology, Asahigaoka, Tajimi 507-0071, Japan
*
a)Permanent address: Basic Research Center, INAX Corporation, Tokoname, Aichi 479-8588, Japan.
a)Permanent address: Basic Research Center, INAX Corporation, Tokoname, Aichi 479-8588, Japan.

Abstract

X-ray powder diffraction data for synthetic materials MgMnSiO4 and Mg0.6Mn1.4SiO4 are reported. Samples were prepared by firing mixtures of MgO, MnCO3, and SiO2 in prescribed molar ratios at 1523 K. Powder diffraction data were collected with a laboratory X-ray source (CuKα) for refinement of unit-cell parameters and synchrotron radiation (λ=1.1980 Å) for intensity measurement of individual reflections. Crystallographic data were MgMnSiO4, orthorhombic, Pnma (No. 62), a=10.4510(1), b=6.12446(5), c=4.80757(4) Å, V=307.717(4) Å3, Z=4, and Dx=3.697 g·cm−3, and Mg0.6Mn1.4SiO4, orthorhombic, Pnma (No. 62), a=10.5241(1), b=6.17903(6), c=4.83927(5) Å, V=314.692(5) Å3, Z=4, and Dx=3.873 g·cm−3.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bragg, L., Claringbull, G. F., and Taylor, W. H. (1965). Crystalline State, Crystal Structure of Minerals (Bell, London), Vol. 4, pp. 173–189.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1982). Rock-Forming Minerals (Longman, London), Vol. 1A, pp. 1–351.Google Scholar
Lager, G. A., Ross, F. K., Rotella, F. J., and Jorgensen, J. D. (1981). “Neutron Powder Diffraction of Forsterite, Mg2SiO4: a Comparison with Single-Crystal Investigations,” J. Appl. Crystallogr. JACGAR 14, 137139. acr, JACGAR CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A Profile Refinement Method for Nuclear and Magnetic Structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Toraya, H. (1986). “Whole-Powder-Pattern Fitting without Reference to a Structural Model: Application to X-ray Powder Diffractometer Data,” J. Appl. Crystallogr. JACGAR 19, 440447. acr, JACGAR CrossRefGoogle Scholar
Toraya, H. (1998). “Weighting Scheme for the Minimization Function in Rietveld Refinement,” J. Appl. Crystallogr. JACGAR 31, 333343. acr, JACGAR CrossRefGoogle Scholar
Toraya, H., Hibino, H., and Ohsumi, K. (1996). “A New Powder Diffractometer for Synchrotron Radiation with a Multiple-detector System,” J. Synchrotron Radiat. JSYRES 3, 7583. jsy, JSYRES CrossRefGoogle ScholarPubMed
Toraya, H., Huang, T. C., and Wu, Y. (1993). “Intensity Enhancement in Asymmetric Diffraction with Parallel-Beam Synchrotron Radiation,” J. Appl. Crystallogr. JACGAR 26, 774777. acr, JACGAR CrossRefGoogle Scholar
Yamazaki, S., and Toraya, H. (1999). “Rietveld Refinements of Site-Occupancy Parameters of Mg2−xMnxSiO4 using a New Weight Function in Least-Squares Fitting,” J. Appl. Crystallogr. JACGAR 32, 5159. acr, JACGAR CrossRefGoogle Scholar
Yamazaki, S., and Toraya, H. (2001). “X-ray Powder Data for a New Phase of Dicalcium Silicate, x-Ca2SiO4,Powder Diffr. PODIE2 16, 110114. pdj, PODIE2 CrossRefGoogle Scholar