Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T23:06:42.917Z Has data issue: false hasContentIssue false

X-ray diffraction characterization of microstrain in some uranium alloys

Published online by Cambridge University Press:  10 January 2013

G. Kimmel
Affiliation:
Nuclear Research Center Negev, P. O. Box 9001, Beer-sheva, Israel
D. Dayan
Affiliation:
Nuclear Research Center Negev, P. O. Box 9001, Beer-sheva, Israel

Abstract

Taking advantage of the feasibility to obtain well-prepared surfaces, an extensive work has been done in studying X-ray diffraction line broadening effects from flat polycrystalline samples of uranium and uranium alloys. The broadening analysis has been used as a semiquantitative method for measuring inhomogeneity of alloying, hardness, and residual thermal stresses. Good correlation between the microstrain and the hardness was found after heat treatments and cold work. A comparable correlation was found between the microstrain in the supersaturated α-uranium phase quenched from the γ region, and the concentration of the alloying elements. The measured microstrain in the supersaturated α-uranium phase was used as a quantitative value for determination of the solubility limit of Ta and W in γ-uranium. As a result of this study it was found that the limit of solubility is approximately 2.6 and 2.0 at. % for Ta and W, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anagnostidis, M., Colombie, M., and Monti, H. (1964).J. Nucl. Mater. 11, 6776.CrossRefGoogle Scholar
Burke, J. J., Colling, D. A., Gorum, A. E., and Greenspan, J. (1976). Physical Metallurgy of Uranium Alloys (Brook Hill Co., Chestnut Hill, MA, in cooperation with the Metals and Ceramics Information Center, Columbus, OH).Google Scholar
Chiotti, P., Klepfer, H. H., and White, R. W. (1959).Trans. Am. Soc. Met. 51, 772.Google Scholar
Collot, C., and Reisse, R. (1971).Mem. Sci. Rev. Met. 6, 419434.Google Scholar
Dayan, D., Beeri, O., Herrmann, B., Landau, A., Zahavi, A., Livne, Z., and Kimmel, G. (1994).J. Alloys Compd. 226, 8993.CrossRefGoogle Scholar
Dayan, D., and Kimmel, G. (1996).J. Alloys Compd. 243, 161166.CrossRefGoogle Scholar
Douglas, D. L. (1961).Trans. ASME 53, 307319.Google Scholar
Guillou, N., Auffredic, J. P., and Louer, D. (1995).Powder Diffr. 10, 236240.CrossRefGoogle Scholar
Gupta, R. K., and Anantharaman, T. R. (1971).Z. Metallkd. 62, 732735.Google Scholar
Halder, N. C., and Wagner, C. N. J. (1996).Adv. X-Ray Anal. 9, 91102.Google Scholar
Hills, R. F., Howlett, B. W., and Butcher, B. R. (1963).J. Less-Comm. Met. 5, 443-461.CrossRefGoogle Scholar
Hills, R. F., Howlett, B. W., and Butcher, B. R. (1965).J. Nucl. Mater. 16, 109128.CrossRefGoogle Scholar
Jackson, R. J., Williams, D. E., and Larsen, W. L. (1963).J. Less-Comm. Met. 5, 443-461.CrossRefGoogle Scholar
Jackson, R. L., and Larsen, W. L. (1967).J. Nucl. Mater. 21, 263276.CrossRefGoogle Scholar
Ji, N., Lebrun, J. L., and Sainfort, P. (1993).Mater. Sci. Forum 133–136, 537542.CrossRefGoogle Scholar
Klug, H. P., and Alexander, L. E. (1974). X-ray Diffraction Procedures, 2nd ed. (Wiley, New York).Google Scholar
Kurita, M. (1991).Adv. X-Ray Anal. 34, 633642.Google Scholar
Landau, A., Kimmel, G., and Talianker, M. (1986).Scr. Metall. 20, 13131316.CrossRefGoogle Scholar
Landau, A., Talianker, M., and Kimmel, G. (1993).J. Nucl. Mater. 207, 274279.CrossRefGoogle Scholar
Langford, J. I., Boultif, A., Auffrédic, J. P., and Louër, D. (1993).J. Appl. Crystallogr. 26, 2233.CrossRefGoogle Scholar
Langford, J. I., Delhez, R., de Keijser, Th. H., and Mittemeijer, E. J. (1988).Aust. J. Phys. 41, 173187.CrossRefGoogle Scholar
Langford, J. I., Louër, D., Sonnenveld, E. J., and Visser, J. W. (1986).Powder Diffr. 1, 211221.CrossRefGoogle Scholar
Louër, D. (1994).Adv. X-Ray Anal. 37, 2735.Google Scholar
Nandi, R. K., and Sen Gupta, S. P. (1978).J. Appl. Crystallogr. 11, 69.CrossRefGoogle Scholar
Saller, H. A., and Rough, F. A. (1952). U. S. A.E.C. Pulb. Nos. AECD-3323 and BMI-716.Google Scholar
Scherrer, P.(1918).Goettingen. Nach. 2, 98.Google Scholar
Schramm, F. G., Gordon, R., and Kaufman, A. R. (1950).J. Met. 188, 195.Google Scholar
Stokes, A. R., and Wilson, A. J. C. (1944).Proc. Phys. Soc. London 56, 174181.CrossRefGoogle Scholar
Tangri, K., and Williams, G. I. (1961).J. Nucl. Mater. 4, 226233.CrossRefGoogle Scholar
Tangri, K., Chaundhuri, D. K., and Rao, C. N. (1965).J. Nucl. Mater. 15, 278287.CrossRefGoogle Scholar
Virot, A. (1962).J. Nucl. Mater. 5, 109119.CrossRefGoogle Scholar
Williamson, G. K., and Hall, W. M. (1953).Acta Metall. 1, 2231.CrossRefGoogle Scholar
Wilson, A. J. W. (1962). X-Ray Optics (Methehun, London).Google Scholar
Yakel, H. L. (1976). “Review of X-ray Diffraction Studies in Uranium Alloys,” Physical Metallurgy of Uranium Alloys, edited by J. B. Burke, D. A. Colling, A. E. Gorum, and J. Greenspan (Brook Hill Co., Chestnut Hill, MA), Chap. 7, pp. 259–308.Google Scholar