Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T19:16:50.444Z Has data issue: false hasContentIssue false

X-ray diffraction and density functional theory studies of R(Fe0.5Co0.5)O3 (R = Pr, Nd, Sm, Eu, Gd)

Published online by Cambridge University Press:  20 September 2016

W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
G. Liu
Affiliation:
Science Research Institute, China University of Geosciences, Beijing 100083, China
I. Levin
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
I. Williamson
Affiliation:
Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725
P. Ackerman
Affiliation:
Department of Materials Science and Engineering, Carnegie Melon University, Pittsburgh, Pennsylvania 15213
K. R. Talley
Affiliation:
Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725
J. Martin
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
K. AlHamdan
Affiliation:
Department of Materials Science and Engineering, The Catholic University of America, Washington, DC 20064
W. Badegaish
Affiliation:
Department of Materials Science and Engineering, The Catholic University of America, Washington, DC 20064
J. A. Kaduk
Affiliation:
Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
L. Li
Affiliation:
Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725 Center for Advanced Energy Studies, Idaho Falls, Idaho 83401
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The structure of a series of lanthanide iron cobalt perovskite oxides, R(Fe0.5Co0.5)O3 (R = Pr, Nd, Sm, Eu, and Gd), have been investigated. The space group of these compounds was confirmed to be orthorhombic Pnma (No. 62), Z = 4. From Pr to Gd, the lattice parameter a varies from 5.466 35(13) Å to 5.507 10(13) Å, b from 7.7018(2) to 7.561 75(13) Å, c from 5.443 38(10) to 5.292 00(8) Å, and unit-cell volume V from 229.170(9) Å3 to 220.376(9) Å3, respectively. While the trend of V follows the trend of the lanthanide contraction, the lattice parameter “a” increases as the ionic radius r(R3+) decreases. X-ray diffraction (XRD) and transmission electron microscopy confirm that Fe and Co are disordered over the octahedral sites. The structure distortion of these compounds is evidenced in the tilt angles θ, ϕ, and ω, which represent rotations of an octahedron about the pseudocubic perovskite [110]p, [001]p, and [111]p axes. All three tilt angles increase across the lanthanide series (for R = Pr to R = Gd: θ increases from 12.3° to 15.2°, ϕ from 7.5° to 15.8°, and ω from 14.4° to 21.7°), indicating a greater octahedral distortion as r(R3+) decreases. The bond valence sum for the sixfold (Fe/Co) site and the eightfold R site of R(Fe0.5Co0.5)O3 reveal no significant bond strain. Density Functional Theory calculations for Pr(Fe0.5Co0.5)O3 support the disorder of Fe and Co and suggest that this compound to be a narrow band gap semiconductor. XRD patterns of the R(Fe0.5Co0.5)O3 samples were submitted to the Powder Diffraction File.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blasse, G. (1965). “New compounds with perovskite-like structures,” J. Inorg. Nucl. Chem. 27, 9931003.CrossRefGoogle Scholar
Blőchl, P. E. (1994). “Projector augmented-wave method,” Phys. Rev. B 50, 17953.CrossRefGoogle ScholarPubMed
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B 41, 244247.CrossRefGoogle Scholar
Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P. (2007). “Enhanced thermopower in PbSe nanocrystal quantum dot superlattices,” Adv. Mater. 19, 10431053.CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence”, J. Appl. Crystallogr. 27, 892900.CrossRefGoogle Scholar
Galasso, F. and Pyle, J. (1963a). “Ordering in compounds of the A(B0 33Ta0 67)O3 type,” Inorg. Chem. 2, 482484.CrossRefGoogle Scholar
Galasso, F. and Pyle, J. (1963b). “Preparation and study of ordering in A(B0 33Nb0 67)O3 perovskite-type compounds,” J. Phys. Chem. 67, 15611562.CrossRefGoogle Scholar
Ghamaty, S. and Eisner, N. B. (1999). “Development of quantum well thermoelectric films,” in Proceedings of the 18th International Conference on Thermoelectrics, Baltimore, MD, pp. 485488.Google Scholar
Goldschmidt, V. M. (1926). “Die Gesetze der Krystallochemie,” Die Naturwissenschaften 14(21), 477485.CrossRefGoogle Scholar
Grebille, D., Lambert, S., Bourée, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.CrossRefGoogle Scholar
He, T., Chen, J. Z., Calvarese, T. G., and Subramanian, M. A. (2006). “Thermoelectric properties of La1−xAxCoO3 (A = Pb, Na),” Solid State Sci. 8, 467469.CrossRefGoogle Scholar
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G. (2004). “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit,” Science 303, 818821.CrossRefGoogle ScholarPubMed
Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). “ In-situ growth of c-axis-oriented Ca3Co4O9 thin films on Si(100),” Appl. Phys. Lett. 86, 082103.CrossRefGoogle Scholar
Karpinsky, D. V., Troyanchuk, I. O., Dobryanskii, V. M., Szymczak, H., and Tovar, M. (2006). “Crystal structure and magnetic properties of the LaCo0.5Fe0.5O3 perovskite,” Crystallogr. Rep. 51, 596.CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J. (1996). “Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169.CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D. (1999). “From ultra-soft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758.CrossRefGoogle Scholar
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748, Los Alamos, USA.Google Scholar
Liechtenstein, A. I., Anisimov, V. I., and Zaanen, J. (1995). “Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators,” Phys. Rev. B 52, R5467.CrossRefGoogle ScholarPubMed
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B 62, 166175.CrossRefGoogle Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds,” J. Solid State Chem. 178, 16701674.CrossRefGoogle Scholar
Mikami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−x Ba x )3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci. 197, 442447.Google Scholar
Mikami, M., Funahashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6 ,” J. Appl. Phys. 94(10), 65796582.CrossRefGoogle Scholar
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).CrossRefGoogle Scholar
PDF, Powder Diffraction File (2014). Produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA 19073-3273, USA.Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865.CrossRefGoogle ScholarPubMed
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32, 751767.CrossRefGoogle Scholar
Shin, W. and Murayama, N. (2000). “Thermoelectric properties of (Bi,Pb)-Sr-Co-O oxide,” J. Mater. Res. 15(2), 382.CrossRefGoogle Scholar
Stephens, P. W. (1999) “Phenomenological model of anisotropic peak broadening,” J. Appl. Crystallogr. 32, 281289.CrossRefGoogle Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, 1268512687.CrossRefGoogle Scholar
Thompson, P., Cox, D. E. and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 ”, J. Appl. Crystallogr. 20, 7983.CrossRefGoogle Scholar
Tritt, T. M. (1996). “Thermoelectrics run hot and cold,” Science 272, 12761277.CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'Quinn, B. (2001). “Growth of one-dimensional Si/SiGe heterostructures by thermal CVD,” Nature 413, 597602.CrossRefGoogle Scholar
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., Cahill, D. G., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.CrossRefGoogle Scholar
Wong-Ng, W., Yang, Z., Hu, Y. F., Huang, Q., Lowhorn, N., Otani, M., Kaduk, J. A., Green, M., and Li, Q. (2009). “Thermoelectric and structural characterization of Ba2Ho(Cu3−x Co x )O6+x ,” J. Appl. Phys. 105(6), 63706.CrossRefGoogle Scholar
Wong-Ng, W., Liu, G., Martin, J., Thomas, E., Lowhorn, N., and Otani, M. (2010). “Phase compatibility of the thermoelectric compounds in the Sr–Ca–Co–O system,” J. Appl. Phys., 107, 033508.CrossRefGoogle Scholar
Wong-Ng, W., Luo, T., Tang, M., Xie, M., Kaduk, J. A., Huang, Q., Yang, Y., Tang, M., and Tritt, T. (2011). “crystal chemistry and thermoelectric properties of compounds in the Ca–Co–Zn–O system,” J. Solid State Chem. 184(8), 2159.CrossRefGoogle Scholar
Wong-Ng, W., Laws, W., and Yan, Y. G. (2013). “Phase diagram and crystal chemistry of the La–Ca–Co–O system”, Solid State Sci. 17, 107110.CrossRefGoogle Scholar
Wong-Ng, W., Laws, W., Talley, K. R., Huang, Q., Yan, J., and Kaduk, J. A. (2014). “Phase equilibria and crystal chemistry of the CaO–½Nd2O3–CoOz system at 885 °C in air,” J. Solid State Chem. 215, 128134.CrossRefGoogle Scholar
Zhao, Y., Weider, D. J., Parise, J. B., and Cox, D. E. (1993a). “Thermal expansion and structural distortion of perovskite – data for NaMgF3 perovskite. Part I,” Phys. Earth Planet. Inter. 76, 116.CrossRefGoogle Scholar
Zhao, Y., Weider, D. J., Parise, J. B., and Cox, D. E. (1993b). “Thermal expansion and structural distortion of perovskite – data for NaMgF3 perovskite. Part II,” Phys. Earth Planet. Inter. 76, 1734.CrossRefGoogle Scholar
Supplementary material: File

Wong-Ng supplementary material S1

Wong-Ng supplementary material

Download Wong-Ng supplementary material S1(File)
File 341.6 KB
Supplementary material: File

Wong-Ng supplementary material S2

Wong-Ng supplementary material

Download Wong-Ng supplementary material S2(File)
File 339.6 KB
Supplementary material: File

Wong-Ng supplementary material S3

Wong-Ng supplementary material

Download Wong-Ng supplementary material S3(File)
File 344.9 KB
Supplementary material: File

Wong-Ng supplementary material S4

Wong-Ng supplementary material

Download Wong-Ng supplementary material S4(File)
File 360.8 KB