Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T02:20:29.908Z Has data issue: false hasContentIssue false

X-Ray Diffraction Analysis of Strontium in Barites

Published online by Cambridge University Press:  10 January 2013

M.C. Osácar Soriano
Affiliation:
Dpto. Ciencias de la Tierra (Cristalografia y Mineralogía), Fac. Ciencias.Ciudad Universitaria. 50009-Zaragoza, Spain
J. Besteiro Ráfales
Affiliation:
Dpto. Ciencias de la Tierra (Cristalografia y Mineralogía), Fac. Ciencias.Ciudad Universitaria. 50009-Zaragoza, Spain
J. González Martínez
Affiliation:
Dpto. Ciencias de la Tierra (Cristalografia y Mineralogía), Fac. Ciencias.Ciudad Universitaria. 50009-Zaragoza, Spain

Abstract

A procedure for Sr-analysis of vein barites by X-ray powder diffraction is described. It is based on the measurement of barite d210 spacing change referenced to NaCl as the internal standard. This procedure covers a range of Sr isomorphic substitution of 0 to 12% SrSO4. Comparison with other values, derived from literature data, shows they are in good agreement with the experimental ones. Statistical analysis of the results yields a maximum absolute error of ±0.50 %SrSO4 in Sr determination. This measurement error proves to be acceptable for most studies of barite in mineral deposits. The effect of Pb-substitution is smaller, in most cases, than this error.

The reported method has the advantage of being fast and simple. It can routinely handle large number of samples as well as small samples isolated from large crystals. Moreover, it allows the recovery of the original sample after the analysis by dissolving the NaCl in water. The main disadvantage is that fair amounts of quartz interfere with the measurement of the position of the barite 210 line.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boulhel, S. (1982). Distribution du barium et du strontium dans la province fluorée tunisienne: aplication aux gîtes de Hamman Jédidi et Hamman Zriba-Jébel Guébli. Thèse de doctorat de 3ème cycle, Univ. Paul Sabatier, Toulouse III (inédit).Google Scholar
Brower, E. & Renault, J. (1971). Solubility and enthalpy of the barium-strontium sulfate solid solution series. N. Mex. State Bur. Mines Mineral Res., C.116, 21.Google Scholar
Goldish, E. (1989). X-Ray Diffraction Analysis of Barium-Strontium Sulfate (Barite-Celestite) Solid Solutions. Pow. Diff. 4, 214216.CrossRefGoogle Scholar
Miyake, M., Minato, I., Morikawa, H. & Iwai, S.-I. (1978). Crystal structures and sulphate force constants of barite, celestite and anglesite. Am. Mineral., 63, 506510.Google Scholar
Osácar, M.C., Besteiro, J. & Pocoví, A. (1986). Estudio de una mineralización de baritina en Aladrén (Zaragoza): descripción mineralógica y estructural. Boletín Sociedad Española Mineralogía, 9, 383389.Google Scholar
Osácar, M.C. (1989). Las mineralizaciones de baritina de la Unidad de Herrera (rama aragonesa de la Cordillera Ibérica). Tesis doctoral, Univ. Zaragoza (inédita).Google Scholar
Renault, J. & Brower, E. (1971) X-ray line broadening in the barium sulfate-strontium series. Am. Mineral., 56, 14811485.Google Scholar
Starke, R. (1964). Die Stronliumgehalte der Baryte. Freib. Forsch. H., C 150, 186.Google Scholar