Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T05:45:57.789Z Has data issue: false hasContentIssue false

X-ray characterization of crosslinked methacrylate copolymers for application as dielectric layers in organic electronics

Published online by Cambridge University Press:  25 July 2019

Dieter Jehnichen*
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Doris Pospiech
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Andreas Berndt
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Selina C. Gomoll
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Eva Natkowski
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Matthias Plötner
Affiliation:
Technische Universität Dresden, Institute of Semiconductors and Microsystems (Institut für Halbleiter- und Mikrosystemtechnik), D-01062 Dresden, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Poly(methyl methacrylate) (PMMA) is one of the most important polymers for application as a dielectric layer in organic electronics, e.g. in organic field-effect transistors. The key to improve the transistor performance is the optimization of the interface between the semiconductor and the dielectric layer. Here, the surface order in thin films of PMMA copolymers with self-organized, semifluorinated (sf) building blocks, and crosslinkable units in single layers and double layers with poly(3-hexylthiophene-2,5-diyl) (P3HT) is investigated. The chemistry of the sf copolymers is systematically varied and the influence on the self-organization in bulk and thin films is examined by a combination of scattering methods. The length of the semifluorinated side chains mainly determines the degree and type of order both in bulk as well as in thin films.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present Address: POLY-CHEM GmbH, Bitterfeld-Wolfen, Germany.

Present Address: FEW Chemicals GmbH, Bitterfeld-Wolfen, Germany.

Present Address: Gustav-Adolph-Str. 36, 09116 Chemnitz, Germany, E-mail: [email protected].

References

Al-Hussein, M., Berndt, A., Jehnichen, D., Häußler, L., Stamm, M., and Pospiech, D. (2016). “Structural investigation of P(BPMA/CPPHMA) and P(MMA/BPMA/CPPHMA) copolymers,” Colloid Polym. Sci. 294, 14751481.Google Scholar
Appelhans, D., Wang, Z.-G., Zschoche, S., Zhuang, R.-C., Häußler, L., Friedel, P., Simon, F., Jehnichen, D., Grundke, K., Eichhorn, K.-J., Komber, H., and Voit, B. (2005). “Bulk and surface properties of maleimide copolymers: Effect of fluorinated side chains,” Macromolecules 38, 16551664.Google Scholar
Beiner, M. (2001). “Relaxation in poly(alkyl methacrylate)s: Crossover region and nanophase separation,” Macromol. Rapid Commun. 22, 869895.Google Scholar
Beiner, M., Kabisch, O., Reichl, S., and Huth, H. (2002). “Structural and dynamic nanoheterogeneities in higher poly(alkyl methacrylate)s,” J. Non-Cryst. Solids 307–310, 658666.Google Scholar
Berndt, A. (2016). “Synthese und Charakterisierung lösungsprozessierbarer und vernetzbarer Methacrylat-Copolymere für den Einsatz als Dielektrika in der organischen Elektronik,” PhD Thesis, Technische Universität Dresden, Germany. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-211995.Google Scholar
Berndt, A., Pospiech, D., Jehnichen, D., Häußler, L., Voit, B., Al-Hussein, M., Plötner, M., Kumar, A., and Fischer, W.-J. (2015). “Methacrylate copolymers with liquid crystalline side chains for organic gate dielectric applications,” ACS Appl. Mater. Interfaces 7, 1233912347.Google Scholar
Chang, J.-F., Sun, B., Breiby, D. W., Nielsen, M. M., Sölling, T., Giles, M., McCulloch, I., and Sirringhaus, H. (2004). “Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents,” Chem. Mater. 16, 47724776.Google Scholar
Chen, T.-A., Wu, X., and Rieke, R. D. (1995). “Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: Their characterization and solid-state properties,” J. Am. Chem. Soc. 117, 233244.Google Scholar
Clark, E. S. (1999). “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40, 46594665.Google Scholar
Colle, R., Grosso, G., Ronzani, A., and Zicovich-Wilson, C. M. (2011). “Structure and X-ray spectrum of crystalline poly(3-hexylthiophene) from DFT-van der Waals calculations,” Phys. Status Solidi B 248, 13601368.Google Scholar
Friedel, P., Pospiech, D., Jehnichen, D., Bergmann, J., and Ober, C. K. (2000). “Polyesters with semifluorinated side chains: A proposal for the solid state structure,” J. Polym. Sci., Part B: Polym. Phys. 38 (12), 16171625.Google Scholar
Gottwald, A., Pospiech, D., Jehnichen, D., Häußler, L., Friedel, P., Pionteck, J., Stamm, M., and Floudas, G. (2002). “Self-assembly and viscoelastic properties of semifluorinated polyesters,” Macromol. Chem. Phys. 203(5–6), 854861.Google Scholar
Hugger, S., Thomann, R., Heinzel, T., and Thurn-Albrecht, T. (2004). “Semicrystalline morphology in thin films of poly(3-hexylthiophene),” Colloid Polym. Sci. 282, 932938.Google Scholar
Ito, Y., Virkar, A. A., Mannsfeld, S., Oh, J. H., Toney, M., Locklin, J., and Bao, Z. (2009). “Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors,” J. Am. Chem. Soc. 131, 93969404.Google Scholar
Jehnichen, D., Pospiech, D., Janke, A., Friedel, P., Häußler, L., Gottwald, A., Kummer, S., Kollig, W., and Grundke, K. (2001). “Bulk and surface structure of semifluorinated polyesters,” Mater. Sci. Forum 378–381(2), 378382.Google Scholar
Jehnichen, D., Pospiech, D., Friedel, P., and Funari, S. S. (2011). “Semifluorinated PMMA/PSFMA diblock copolymers with multiple phase separation,” Z. Kristallogr. Proc. 1, 487492.Google Scholar
Jehnichen, D., Friedel, P., Selinger, R., Korwitz, A., Wengenmayr, M., Berndt, A., and Pospiech, D. (2013). “Temperature dependant structural changes in thin films of random semifluorinated PMMA copolymers,” Powder Diffr. S2, S144S160.Google Scholar
Jurchescu, O. D., Popinciuc, M., van Wees, B. J., and Palstra, T. M. (2007). “Interface-controlled, high-mobility organic transistors,” Adv. Mater. 19, 688692.Google Scholar
Ma, W., Yang, C., Gong, X., Lee, K, and Heeger, A. J. (2005). “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15, 16171622.Google Scholar
Miozzo, L., Yassar, A., and Horowitz, G. (2010).“Surface engineering for high performance organic electronic devices: The chemical approach,” J. Mater.Chem. 20, 25132538.Google Scholar
Pospiech, D., and Jehnichen, D. (2014). “Self-organizing semifluorinated methacrylate copolymers,” Chpt. 11 in: Handbook of Fluoropolymer Science & Technology, edited by Smith, D. W. Jr., Iacono, S. T. and Iyer, S. S. (Wiley, New York), vol. 1, pp. 235290.Google Scholar
Pospiech, D., Jehnichen, D., Chunsod, P., Friedel, P., Simon, F., and Grundke, K. (2016). “Structure-property relations in semifluorinated poly(methacrylate)s,” Chapt. 8 in: Fluorinated Polymers: From Fundamental to Practical Synthesis and Applications, edited by Ameduri, B. and Sawada, H. (RSC Press, Cambridge), Vol. 1, pp. 235275.Google Scholar
Sze, S. M., and Ng, K. K. (2006). Physics of Semiconductor Devices (Wiley & Sons, Hoboken), 3rd ed.Google Scholar
Tsuwi, J., Pospiech, D., Jehnichen, D., Häußler, L., and Kremer, F. (2007). “Molecular dynamics in semifluorinated side-chain polysulfone studied by broadband dielectric spectroscopy,” J. Appl. Polym. Sci. 105 (1), 201207.Google Scholar
Veres, J., Ogier, S., and Lloyd, G. (2004). “Gate insulators in organic field-effect transistors,” Chem. Mater. 16, 45434555.Google Scholar
Wu, P.-T., Xin, H., Kim, F. S., Ren, G., and Jenekhe, S. A. (2009). “Regioregular poly(3-pentylthiophene): Synthesis, self-assembly of nanowires, high-mobility field-effect transistors, and efficient photovoltaic cells,” Macromolecules 42, 88178826.Google Scholar
Xiao, M., Zhang, X., Bryan, Z. J., Jasensky, J., McNeil, A. J., and Chen, Z. (2015). “Effect of solvent on surface ordering of poly(3-hexylthiophene) thin films,” Langmuir 31, 50505056.Google Scholar
Yamamoto, T., and Hara, T. (1982). “X-ray diffraction study of crystal transformation and molecular disorder in poly(tetrafluoroethylene),” Polymer 23, 521528.Google Scholar