Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T15:18:41.775Z Has data issue: false hasContentIssue false

Use of TALP with laboratory powder diffraction data from 2D detectors

Published online by Cambridge University Press:  14 November 2013

Oriol Vallcorba
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193-Bellaterra, Catalunya, Spain.
Anna Crespi
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193-Bellaterra, Catalunya, Spain.
Jordi Rius
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193-Bellaterra, Catalunya, Spain.
Carles Miravitlles
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193-Bellaterra, Catalunya, Spain.

Abstract

The viability of the direct-space strategy TALP (Vallcorba et al., 2012b) to solve crystal structures of molecular compounds from laboratory powder diffraction data is shown. The procedure exploits the accurate metric refined from a ‘Bragg-Brentano’ powder pattern to extract later the intensity data from a second ‘texture-free’ powder pattern with the DAJUST software (Vallcorba et al., 2012a). The experimental setup for collecting this second pattern consists of a circularly collimated X-ray beam and a 2D detector. The sample is placed between two thin Mylar® foils, which reduces or even eliminates preferred orientation. With the combination of the DAJUST and TALP software a preliminary but rigorous structural study of organic compounds can be carried out at the laboratory level. In addition, the time-consuming filling of capillaries with diameters thinner than 0.3mm is avoided.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allinger, N. L. (1977). “Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms,” J. Am. Chem. Soc. 99, 81278134.CrossRefGoogle Scholar
Bergese, P., Bontempi, E., Colombo, I. and Depero, L. E. (2001). Micro X-ray diffraction on capillary powder samples: a novel and effective technique for overcoming preferred orientation.” J. Appl. Crystallogr. 34, 663665.CrossRefGoogle Scholar
Bruker Analytical X-ray Systems (1999). MERGE: RAW range merging utility, ver. 2.0.05. (Computer Software), Bruker AXS software, Madison, Wisconsin, USA.Google Scholar
Bruker Analytical X-ray Systems (2004). GADDS: General Area Detector Diffraction System ver. 4.1.16 (Computer Software), Bruker AXS software, Madison, Wisconsin, USA.Google Scholar
Cêrný, R. and Favre-Nicolin, V. (2007). “Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives,” Z. Kristallogr. 222, 105113.Google Scholar
Ivashevskaya, S. N., van de Streek, J., Djanhan, J. E., Brüning, J., Alig, E., Bolte, M., Schmidt, M. U., Blaschka, P., Höffken, H. W. and Erk, P. (2009). “Structure determination of seven phases and solvates of Pigment Yellow 183 and Pigment Yellow 191 from X-ray powder and single-crystal data,” Acta Crystallogr., Sect. B: Struct. Sci. 65, 212222.Google Scholar
Mabied, A. F., Müller, M., Dinnebier, R. E., Nozawa, S., Hoshino, M., Tomita, A., Sato, T. and Adachi, S. (2012). “A time-resolved powder diffraction study of in-situ photodimerization kinetics of 9-methylanthracene using a CCD area detector and parametric Rietveld refinement,” Acta Crystallogr., Sect. B: Struct. Sci. 68, 424430.CrossRefGoogle ScholarPubMed
Mastropaolo, D., Camerman, A. and Camerman, N. (1980) “Folic acid: crystal structure and implications for enzyme binding,” Science 210, 334336.Google Scholar
Ning, G. and Flemming, R. L. (2005). “Rietveld refinement of LaB6: data from µXRD,” J. Appl. Crystallogr. 38, 757759.Google Scholar
Rius, J. (2012). RIBOLS (Computer Software), Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Catalunya, Spain.Google Scholar
Vallcorba, O., Rius, J., Frontera, C., Peral, I. and Miravitlles, C. (2012a). “DAJUST: a suite of computer programs for pattern matching, space-group determination and intensity extraction from powder diffraction data,” J. Appl. Crystallogr. 45, 844848.Google Scholar
Vallcorba, O., Rius, J., Frontera, C. and Miravitlles, C., (2012b). “TALP: a multisolution direct-space strategy for solving molecular crystals from powder diffraction data based on restrained least squares,” J. Appl. Crystallogr. 45, 12701277.Google Scholar