Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T02:58:23.679Z Has data issue: false hasContentIssue false

Third structure determination by powder diffractometry round robin (SDPDRR-3)

Published online by Cambridge University Press:  29 February 2012

A. Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures, Université du Maine, CNRS UMR 6010, Av. O. Messiaen, 72085 Le Mans, France
L. M. D. Cranswick
Affiliation:
Chalk River Laboratories, Canadian Neutron Beam Centre, National Research Council Canada, Building 459, Chalk River, Ontario K0J 1J0, Canada
K. Adil
Affiliation:
Laboratoire des Oxydes et Fluorures, Université du Maine, CNRS UMR 6010, Av. O. Messiaen, 72085 Le Mans, France
A. Altomare
Affiliation:
Istituto di Cristallografia, CNR, Via G. Amendola, 122/o, 70126 Bari, Italy
M. Avdeev
Affiliation:
Bragg Institute, Australian Nuclear Science and Technology Organisation, Building 87, PMB 1, Menai, New South Wales 2234, Australia
R. Cerny
Affiliation:
Laboratoire de Cristallographie, 24, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
C. Cuocci
Affiliation:
Istituto di Cristallografia, CNR, Via G. Amendola, 122/o, 70126 Bari, Italy
C. Giacovazzo
Affiliation:
Istituto di Cristallografia, CNR, Via G. Amendola, 122/o, 70126 Bari, Italy
I. Halasz
Affiliation:
Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
S. H. Lapidus
Affiliation:
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
J. N. Louwen
Affiliation:
Research Center Catalysts, Albemarle Corporation, P.O. Box 37650, 1030 BE Amsterdam, The Netherlands
A. Moliterni
Affiliation:
Istituto di Cristallografia, CNR, Via G. Amendola, 122/o, 70126 Bari, Italy
L. Palatinus
Affiliation:
Laboratoire de Cristallographie, Le Cubotron, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
R. Rizzi
Affiliation:
Istituto di Cristallografia, CNR, Via G. Amendola, 122/o, 70126 Bari, Italy
E. C. Schilder
Affiliation:
Research Center Catalysts, Albemarle Corporation, P.O. Box 37650, 1030 BE Amsterdam, The Netherlands
P. W. Stephens
Affiliation:
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
K. H. Stone
Affiliation:
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
J. van Mechelen
Affiliation:
Laboratory of Crystallography, University of Amsterdam, Valckenierstraat 65, 1018XE Amsterdam, The Netherlands
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The results from a third structure determination by powder diffractometry (SDPD) round robin are discussed. From the 175 potential participants having downloaded the powder data, nine sent a total of 12 solutions (8 and 4 for samples 1 and 2, respectively, a tetrahydrated calcium tartrate and a lanthanum tungstate). Participants used seven different computer programs for structure solution (ESPOIR, EXPO, FOX, PSSP, SHELXS, SUPERFLIP, and TOPAS), applying Patterson, direct methods, direct space methods, and charge flipping approach. It is concluded that solving a structure from powder data remains a challenge, at least one order of magnitude more difficult than solving a problem with similar complexity from single-crystal data. Nevertheless, a few more steps in the direction of increasing the SDPD rate of success were accomplished since the two previous round robins: this time, not only the computer program developers were successful but also some users. No result was obtained from crystal structure prediction experts.

Type
Crystallography Education
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adil, K., Le Bail, A., Dujardin, G., and Maisonneuve, V. (2007). “A new 1D hybrid fluoroaluminate templated by an original tetramine,” Polyhedron PLYHDE 26, 24932497. 10.1016/j.poly.2006.12.041CrossRefGoogle Scholar
Allen, F. H. (2002). “The Cambridge structural database: A quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 58, 380388. 10.1107/S0108768102003890CrossRefGoogle ScholarPubMed
Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2004). “Automatic structure determination from powder data with EXPO2004,” J. Appl. Crystallogr. JACGAR 37, 10251028. 10.1107/S0021889804021417CrossRefGoogle Scholar
Andreev, Y. G., Lightfoot, P., and Bruce, P. G. (1997). “A general Monte Carlo approach to structure solution from powder-diffraction data: Application to poly(ethylene oxide)3:LiN(SO2CF3)2,” J. Appl. Crystallogr. JACGAR 30, 294305. 10.1107/S0021889896013556CrossRefGoogle Scholar
Baerlocher, Ch., McCusker, L., and Palatinus, L. (2007). “Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data,” Z. Kristallogr. ZEKRDZ 222, 4753. 10.1524/zkri.2007.222.2.47CrossRefGoogle Scholar
Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Le Bail, A., Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W., and Toby, B. H. (2004). “Size-strain line-broadening analysis of the ceria round-robin sample,” J. Appl. Crystallogr. JACGAR 37, 911924. 10.1107/S0021889804022551CrossRefGoogle Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L., and Luksch, P. (2002). “New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 58, 364369. 10.1107/S0108768102006948CrossRefGoogle ScholarPubMed
Bergmann, J., Le Bail, A., Shirley, R., and Zlokazov, V. (2004). “Renewed interest in powder diffraction data indexing,” Z. Kristallogr. ZEKRDZ 219, 783790. 10.1524/zkri.219.12.783.55862CrossRefGoogle Scholar
Boese, R. and Heinemann, O. (1993). “Crystal-structure of calcium tartrate tetrahydrate, C4H4O6Ca(H2O)4,” Z. Kristallogr. ZEKRDZ 205, 348349.CrossRefGoogle Scholar
Brenner, S., McCusker, L. B., and Baerlocher, C. (2002). “The application of structure envelopes in structure determination from powder diffraction data,” J. Appl. Crystallogr. JACGAR 35, 243252. 10.1107/S0021889802001759CrossRefGoogle Scholar
Brixner, L. H., Chen, H. Y., and Foris, C. M. (1982). “Structure and luminescence of some rare-earth halotungstates of the type Ln3WO6Cl3,” J. Solid State Chem. JSSCBI 44, 99107. 10.1016/0022-4596(82)90405-4CrossRefGoogle Scholar
Brodski, V., Peschar, R., and Schenk, H. (2005). “ORGANA: A program package for structure determination from powder diffraction data by direct-space methods,” J. Appl. Crystallogr. JACGAR 38, 688693. 10.1107/S0021889805015876CrossRefGoogle Scholar
Chambrier, M. H., Le Bail, A., Kodjikian, S., Suard, E., and Goutenoire, F. (2009). “Structure determination of La18W10O57,” Inorg. Chem. INOCAJ 48, 65666572.CrossRefGoogle ScholarPubMed
Clearfield, A., Reibenspies, J. H., and Bhuvanesh, N. (2008). Principles and Applications of Powder Diffraction (Blackwell, Oxford).Google Scholar
Clegg, W. and Teat, S. J. (2000). “Tetracycline hydrochloride: A synchrotron microcrystal study,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 56, 13431345. 10.1107/S0108270100010349CrossRefGoogle ScholarPubMed
Coelho, A. A. (2000). “Whole-profile structure solution from powder diffraction data using simulated annealing,” J. Appl. Crystallogr. JACGAR 33, 899908. 10.1107/S002188980000248XCrossRefGoogle Scholar
David, W. I. F. (2007). “CPD Chairman's Message,” Commission on Powder Diffraction IUCr Newsletter, Vol. 35, p. 2, (http://www.iucr.org/resources/commissions/powder-diffraction/newsletter).Google Scholar
David, W. I. F., Shankland, K., McCusker, L. L., and Baerlocher, Ch. (2002). Structure Determination from Powder Diffraction Data (Oxford University Press, Oxford).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. M., and Cole, J. C. (2006). “DASH: A program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. JACGAR 39, 910915. 10.1107/S0021889806042117CrossRefGoogle Scholar
Day, G. M., Motherwell, W. D. S., Ammon, H. L., Boerrigter, S. X. M., Della Valle, R. G., Venuti, E., Dzyabchenko, A., Dunitz, J. D., Schweizer, B. P., van Eijck, B. P., Erk, P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Hofmann, D. W. M., Leusen, F. J. J., Liang, C., Pantelides, C. C., Karamertzanis, P. G., Price, S. L., Lewis, T. C., Nowell, H., Torrisi, A., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U., and Verwer, P. (2005). “A third blind test of crystal structure prediction,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 61, 511527. 10.1107/S0108768105016563CrossRefGoogle ScholarPubMed
Dinnebier, R. E. and Billinge, S. J. L. (2008). Powder Diffraction—Theory and Practice (RSC, Cambridge).CrossRefGoogle Scholar
Engel, G. E., Wilke, S., Konig, O., Harris, K. D. M., and Leusen, F. J. J. (1999). “POWDERSOLVE: A complete package for crystal structure solution from powder diffraction patterns,” J. Appl. Crystallogr. JACGAR 32, 11691179. 10.1107/S0021889899009930CrossRefGoogle Scholar
Favre-Nicolin, V. and Cerny, R. (2002). “FOX: Free objects for crystallography: A modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. JACGAR 35, 734743. 10.1107/S0021889802015236CrossRefGoogle Scholar
Feng, Z. J. and Dong, C. (2007). “GEST: A program for structure determination from powder diffraction data using a genetic algorithm,” J. Appl. Crystallogr. JACGAR 40, 583588. 10.1107/S0021889807008618CrossRefGoogle Scholar
Harris, K. D. M., Johnston, R. L., and Kariuki, B. M. (1998). “The genetic algorithm: Foundations and applications in structure solution from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 54, 632645. 10.1107/S0108767398003389CrossRefGoogle Scholar
Harris, K. D. M., Tremayne, M., Lightfoot, P., and Bruce, P. G. (1994). “Crystal-structure determination from powder diffraction data by Monte-Carlo methods,” J. Am. Chem. Soc. JACSAT 116, 35433547. 10.1021/ja00087a047CrossRefGoogle Scholar
Hawthorne, F. C., Borys, I., and Ferguson, R. B. (1982). “Structure of calcium tartrate tetrahydrate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 38, 24612463. 10.1107/S0567740882009042CrossRefGoogle Scholar
Hill, R. J. and Cranswick, L. M. D. (1994). “International Union of Crystallography. Commission on Powder Diffraction. Rietveld refinement round robin. II. Analysis of monoclinic ZrO2,” J. Appl. Crystallogr. JACGAR 27, 802844. 10.1107/S0021889894000646CrossRefGoogle Scholar
Jansen, J., Peschar, R., and Schenk, H. (1993). “Application of direct-methods to powder data—A weighting scheme for intensities in the optimal symbolic addition program SIMPEL88,” Z. Kristallogr. ZEKRDZ 206, 3343.CrossRefGoogle Scholar
Kovalevsky, A. V., Kharton, V. V., and Naumovich, E. N. (1999). “Oxygen ion conductivity of hexagonal La2W1.25O6.75,” Mater. Lett. MLETDJ 38, 300304. 10.1016/S0167-577X(98)00178-5CrossRefGoogle Scholar
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo analysis of powder diffraction data,” Mater. Sci. Forum MSFOEP 378–381, 6570. 10.4028/www.scientific.net/MSF.378-381.65CrossRefGoogle Scholar
Le Bail, A. (2003). COD1000005—http://www.crystallography.net/Google Scholar
Le Bail, A. (2004). “Monte Carlo indexing with MCMAILLE,” Powder Diffr. PODIE2 19, 249254. 10.1154/1.1763152CrossRefGoogle Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications: A retrospection,” Powder Diffr. PODIE2 20, 316326. 10.1154/1.2135315CrossRefGoogle Scholar
Le Bail, A., Bazin, D., Daudon, M., Brochot, A., Robbez-Masson, V., and Maisonneuve, V. (2009). “Racemic calcium tartrate tetrahydrate (form-II) in rat urinary stones,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 65, 350354.CrossRefGoogle ScholarPubMed
Le Bail, A. and Cranswick, L. M. D. (2001). “Revisiting the 1998 SDPD round robin,” Commission on Powder Diffraction IUCr Newsletter, Vol. 25, pp. 79 (http://www.iucr.org/resources/commissions/powder-diffraction/newsletter).Google Scholar
Le Bail, A. and Cranswick, L. M. D. (2003). “SDPD Round Robin 2002 results,” Commission on Powder Diffraction IUCr Newsletter, Vol. 29, pp. 3134 (http://www.iucr.org/resources/commissions/powder-diffraction/newsletter).Google Scholar
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., and Lwin, T. (2001). “Outcomes of the International Union of Crystallography Commission on Powder diffraction round robin on quantitative phase analysis: Samples 1a to 1h,” J. Appl. Crystallogr. JACGAR 34, 409426. 10.1107/S0021889801007476CrossRefGoogle Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr. JACGAR 32, 3650. 10.1107/S0021889898009856CrossRefGoogle Scholar
Oszlányi, G. and Sütő, A. (2004). “Ab initio structure solution by charge flipping,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 60, 134141. 10.1107/S0108767303027569CrossRefGoogle ScholarPubMed
Palatinus, L. and Chapuis, G. (2007). “SUPERFLIP: A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions,” J. Appl. Crystallogr. JACGAR 40, 786790. 10.1107/S0021889807029238CrossRefGoogle Scholar
Parise, J. B. and Brixner, L. H. (1983). “Refinement of the structure of trilanthanum trichlorohexaoxotungstate, La3WO6Cl3, from neutron powder diffraction data,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 39, 13261328. 10.1107/S0108270183008409CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. JACGAR 14, 357361. 10.1107/S0021889881009618CrossRefGoogle Scholar
Pecharsky, V. K. and Zavalij, P. Y. (2003). Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York).Google Scholar
Polyanskaya, T. M., Borisov, S. V., and Belov, N. V. (1969). “Crystal structure of Pr3WO6Cl3,” Dokl. Akad. Nauk SSSR DANKAS 187, 10431046.Google Scholar
Putz, H., Schon, J. C., and Jansen, M. (1999). “Combined method for ab initio structure solution from powder diffraction data,” J. Appl. Crystallogr. JACGAR 32, 864870. 10.1107/S0021889899006615CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571. 10.1107/S0021889869006558CrossRefGoogle Scholar
Rius, J. (2004). “Advances and some recent applications of the origin-free modulus sum function,” Z. Kristallogr. ZEKRDZ 219, 826832. 10.1524/zkri.219.12.826.55866CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B PHYBE3 192, 5569. 10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON,” J. Appl. Crystallogr. JACGAR 36, 713. 10.1107/S0021889802022112CrossRefGoogle Scholar
Stephens, P. W. and Huq, A. (2002). “PSSP: An open source powder structure solution program for direct space simulated annealing,” Trans. Am. Crystallogr. Assoc. TACAAH 37, 127144.Google Scholar
Yanovskii, V. K. and Voronkova, V. I. (1975). “Crystallography and properties of lanthanum oxytungstate, La2WO6,” Sov. Phys. Crystallogr. SPHCA6 20, 354355.Google Scholar
Zhu, J. H., Wu, H. X., and Le Bail, A. (1999). “Structure of [Co(NH3)5CO3]NO3.H2O,” Solid State Sci. SSSCFJ 1, 5562. 10.1016/S1293-2558(00)80064-3CrossRefGoogle Scholar