Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T19:15:24.541Z Has data issue: false hasContentIssue false

Testing the Debye Function Approach on a Laboratory X-ray Powder Diffraction Equipment. A Critical Study.

Published online by Cambridge University Press:  14 November 2013

Ruggero Frison
Affiliation:
Istituto di Cristallografia del CNR and To.Sca.Lab, Via Lucini 3, 22100 Como, Italy
Antonio Cervellino
Affiliation:
Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
Giuseppe Cernuto
Affiliation:
Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, and To.Sca.Lab, Via Valleggio 11, 22100 Como, Italy
Antonietta Guagliardi*
Affiliation:
Istituto di Cristallografia del CNR and To.Sca.Lab, Via Lucini 3, 22100 Como, Italy
Norberto Masciocchi
Affiliation:
Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, and To.Sca.Lab, Via Valleggio 11, 22100 Como, Italy

Abstract

Total Scattering Methods are nowadays widely used for the characterization of defective and nanosized materials. They commonly rely on highly accurate neutron and synchrotron diffraction data collected at dedicated beamlines. Here, we compare the results obtained on conventional laboratory equipment and synchrotron radiation when adopting the Debye Function Analysis method on a simple nanocrystalline material (a synthetic iron oxide with average particle size near to 10 nm). Such comparison, which includes the cubic lattice parameter, the sample stoichiometry and the microstructural (size-distribution) analyses, highlights the limitations, but also some strengthening points, of dealing with conventional powder diffraction data collections on nanocrystalline materials.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B. and Shi, X. T. (2010). “The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source,” J. Synchrotron Radiat. 17, 653668.Google Scholar
Cernuto, G., Masciocchi, N., Cervellino, A, Colonna, G. M. and Guagliardi, A. (2011). “Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total scattering Debye Function study,” J. Amer. Chem. Soc. 113, 31143119.CrossRefGoogle Scholar
Cernuto, G., Galli, S., Trudu, F., Colonna, G. M., Masciocchi, N., Cervellino, A. and Guagliardi, A. (2011). “Investigating the Amorphous–Crystalline Interplay in SiO2/TiO2 Nanocomposites by Total Scattering Methods,” Angew. Chem. 123, 1102011025.Google Scholar
Cervellino, A., Giannini, C. and Guagliardi, A. (2003). “Determination of nanoparticle type, size and strain distribution from X-ray data for monoatomic f.c.c.-derived non-crystallographic nanoparticles,” J. Appl. Crystallogr. 36, 11481158.CrossRefGoogle Scholar
Cervellino, A., Giannini, C., Guagliardi, A., Zanchet, D. (2004). “Quantitative analysis of gold nanoparticles from synchrotron data by means of least-squares techniques,” Eur. J. Phys. B, 41, 485493.Google Scholar
Cervellino, A., Giannini, C. and Guagliardi, A. (2010). “DEBUSSY: a Debye user system for nanocrystalline materials,” J. Appl. Crystallogr. 43, 15431547.CrossRefGoogle Scholar
Cervellino, A. and Guagliardi, A. (2010) “Turning the Debye Function into an Efficient Total Scattering method for Nanocrystals,” in Diffraction at the Nanoscale: Nanocrystals, Defective and Amorphous Materials edited by Masciocchi, N., Guagliardi, A (Insubria University Press, Varese, Italy).Google Scholar
Debye, P. (1915). “Zerstreuung von Röntgenstrahlen,” Ann. Phys. 46, 809823.Google Scholar
Egami, T. and Billinge, S. J. L. (2003). Underneath the Bragg Peaks, Volume 16: Structural Analysis of Complex Materials (Pergamon Press, Oxford, UK).Google Scholar
Guagliardi, A., Cedola, A., Giannini, C., Ladisa, M., Cervellino, A., Sorrentino, A., Lagomarsino, S., Cancedda, R. and Mastrogiacomo, M. (2010), “Debye function analysis and 2D imaging of nanoscaled engineered boneBiomat. 31, 82898298.Google Scholar
Hall, B. D. (2000), “Debye function analysis of structure in diffraction from nanometer-sized particles,” J. Appl. Phys., 87, 16661675.Google Scholar
Masciocchi, N., Maspero, A., Cervellino, A., Guagliardi, A. (2012). “From paracrystalline Ru(CO)4 1D polymer to nanosized ruthenium metal: a case of study through Total Scattering analysis”, Cryst. Growth Des. 12, 36313637.Google Scholar
Somogyvári, Z., E. Sváb, E., Mèszáros, G., Krezhov, K., Nedkov, I., Sajó, I. and Bourée, F., (2010) “Vacancy ordering in nanosized maghemite from neutron and X-ray powder diffraction,” Appl. Phys. A: Solids Surf. 74, S1077S1079.Google Scholar
Warren, B. E. (1990). X-ray Diffraction (Dover, New York).Google Scholar
Young, R. A. (1981). The Rietveld Method (Oxford University Press, Oxford, UK).Google Scholar