Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T17:20:49.244Z Has data issue: false hasContentIssue false

Synthesis and X-ray powder diffraction data of transition metal derivatives of maleic acid. I. M2+(C4H3O4)2⋅4H2O (M2+=Mn, Fe, Co, Ni, and Zn)

Published online by Cambridge University Press:  05 March 2012

A. Briceño*
Affiliation:
Laboratorio Nacional de Difracción de Rayos-X, Facultad de Ciencias, Universidad de Los Andes, Apdo. Postal 40, La Hechicera, Mérida 5251, Venezuela
T. González*
Affiliation:
Laboratorio Nacional de Difracción de Rayos-X, Facultad de Ciencias, Universidad de Los Andes, Apdo. Postal 40, La Hechicera, Mérida 5251, Venezuela
G. Díaz de Delgado*
Affiliation:
Laboratorio Nacional de Difracción de Rayos-X, Facultad de Ciencias, Universidad de Los Andes, Apdo. Postal 40, La Hechicera, Mérida 5251, Venezuela
R. Guevara*
Affiliation:
Laboratorio Nacional de Difracción de Rayos-X, Facultad de Ciencias, Universidad de Los Andes, Apdo. Postal 40, La Hechicera, Mérida 5251, Venezuela
J. M. Delgado*
Affiliation:
Laboratorio Nacional de Difracción de Rayos-X, Facultad de Ciencias, Universidad de Los Andes, Apdo. Postal 40, La Hechicera, Mérida 5251, Venezuela
*
a) Electronic mail: [email protected]
b) Electronic mail: [email protected]
c) Electronic mail: [email protected]
d) Electronic mail: [email protected]
e) Electronic mail: [email protected]

Abstract

Five transition metal derivatives of maleic acid with general formula, M2+(C4H3O4)2⋅4H2O (M2+=Mn, Fe, Co, Ni, and Zn) were prepared by slow evaporation of the aqueous solution at room temperature. Their X-ray powder diffraction patterns were recorded and evaluated. These materials are isostructural and crystallize in a triclinic unit cell. The volume of the cells vary linearly between that of the Ni complex [V=314.65(7) Å3: a=5.1769(8) Å, b=7.317(1) Å, c=9.140(2) Å, α=108.42(2)°, β=104.61(1)°, γ=92.87(1)°] and the volume of the Mn-derivative [V=330.30(8) Å3: a=5.322(1) Å, b=7.375(1) Å, c=9.752(2) Å, α=115.48(2)°, β=106.64(2)°, γ=86.63(2)°].

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H., and Kennard, O. (1993). “3D Search and Research Using the Cambridge Structural Database,” Chem. Design Automation News ZZZZZZ 31, 3137.Google Scholar
Briceño, A., Díaz de Delgado, G., RamírezV., B. V., B., Velásquez, W. O., and Bahsas, B. A. (1999). “Crystal chemistry and thermal behavior of metal salts and complexes of unsaturated dicarboxylic acids: aquabis (hydrogen itaconato) barium(II), [Ba(C5H5O4)2(OH2],'Crystal chemistry and thermal behavior of metal salts and complexes of unsaturated dicarboxylic acids: aquabis (hydrogen itaconato) barium(II), [Ba(C5H5O4)2(OH2],'’ J. Chem. Crystallogr. ZZZZZZ 27, 391395.Google Scholar
Cernák, J., Chomic, J., Kapenstein, C., and Robert, F. (1997). “Preparation, structure and thermal properties of a zinc copper maleate precursor (Cu0.06Zn0.94)C4H2O4⋅2H2O,J. Chem. Soc. Dalton Trans. JCDTBI 17, 29812985. jcd, JCDTBI CrossRefGoogle Scholar
Contreras, J. E., RamírezV., B. V., B., and Díaz de Delgado, G. (1997). “Structure of diaqua(itaconato) cadmium(II), [Cd(C5H4O4)(OH2)2],J. Chem. Crystallogr. ZZZZZZ 27, 391395.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR CrossRefGoogle Scholar
Díaz de Delgado, G., Parra, P. P., Briceño, A., and Delgado, J. M. (1995). “Crystal structure of triaquamaleato strontium(II) monohydrate, [Sr(C4H2O4)(OH2)3]⋅H2O,J. Chem. Crystallogr. ZZZZZZ 25, 241244.CrossRefGoogle Scholar
Díaz de Delgado, G., Wheeler, K., Snider, B., and Foxman, B. M. (1991). “Stereospecific γ-ray-induced trimerization of crystalline sodium trans-2-butenoate,” Angew. Chem. Int. Ed. Engl. ACIEAY 30, 420421. aci, ACIEAY CrossRefGoogle Scholar
Kareiva, A., Harlan, C. J., MacQueen, D. B., Cook, R. L., and Barron, A. R. (1996). “Carboxylate-Substituted Alumoxanes as Processable Precursors to Transition Metal-Aluminum and Lanthanide-Aluminum Mixed-Metal Oxides: Atomic Scale Mixing via a New Transmetalation Reaction,” Chem. Mater. CMATEX 8, 23312340. cma, CMATEX CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS*AIDS80: A FORTRAN Program for Crystallographic Data Evaluation,” National Bureau of Standards (USA), Tech. Note 1141 (NBS*AIDS83 is development of NBS*AIDS80.Google Scholar
Powder Diffraction File (1999). International Centre for Diffraction Data. Newton Square, PA.Google Scholar
Sathyamurthy, S., and Salama, K. (1998). “Processing of YBa2Cu3Ox Films by Solution Techniques Using Metal-Organic Decomposition,” J. Supercond. JOUSEH 11, 545553. jsc, JOUSEH CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomaic Distances in Halides and Chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 32, 751767. aca, ACACBN CrossRefGoogle Scholar
Smith, G. S., and Synder, R. L. (19798). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. acr, JACGAR CrossRefGoogle Scholar
Venkataraman, A., Mukhedkar, V. A., Rahman, M. M., Nikumbh, A. K., and Mukhedkar, A. J. (1987). “Synthesis of γ-Fe2O3 by Thermal Decomposition of FeC4H2O4⋅1/2H2O. II,” Thermochim. Acta THACAS 115, 215227. tha, THACAS CrossRefGoogle Scholar