Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T18:19:14.671Z Has data issue: false hasContentIssue false

Synthesis and X-ray powder diffraction data of 7-fluoro-2-exo-(2-methylpropen-1-yl)-2,3,4,5-tetrahydro-1,4-epoxybenzo[b]azepine

Published online by Cambridge University Press:  13 March 2013

M. A. Macías
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
J. A. Henao*
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Lina María Acosta
Affiliation:
Laboratorio de Síntesis Orgánica (LSO), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9, Ciudadela Universitaria, Bucaramanga, Colombia
Alirio Palma
Affiliation:
Laboratorio de Síntesis Orgánica (LSO), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9, Ciudadela Universitaria, Bucaramanga, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The stereoselective synthesis of 7-fluoro-2-exo-(2-methylpropen-1-yl)-2,3,4,5-tetrahydro-1,4-epoxybenzo[b]azepine was developed by intramolecular 1,3-dipolar cycloaddition of the nitrone derived from the corresponding 2-allyl-4-fluoro-N-(3-methylbut-2-enyl)aniline. The X-ray powder diffraction (XRPD) pattern for the new compound was analyzed and found to crystallize in a monoclinic system with space group P21/m (No. 11) and refined unit-cell parameters a = 11.655(5) Å, b = 5.850(2) Å, c = 18.314(4) Å, β = 104.27(3) and V = 1210.1 (6) Å3.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, L. M., Palma, A., and Bahsas, A. (2010). “Rational use of substituted N-allyl and N,N-diallylanilines in the stereoselective synthesis of novel 2-alkenyltetrahydro-1-benzazepines,” Tetrahedron 66, 83928401.CrossRefGoogle Scholar
Boultif, A. and Loüer, D. (2006). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Buhrke, V., Jenkins, R., and Smith, D. (1998). Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (Wiley, New York), pp. 141142.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Dong, C. (1999). “POWDERX: Windows 95 based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 833838.CrossRefGoogle Scholar
Gómez-Ayala, S., Castrillón, J. A., Palma, A., Leal, S. M., Escobar, P., and Bahsas, A. (2010). “Synthesis, structural elucidation and in vitro antiparasitic activity against Trypanosoma cruzi and Leishmania chagasi parasites of novel tetrahydro-1-benzazepine derivatives,” Bioorg. Med.Chem. 18, 47214739.CrossRefGoogle ScholarPubMed
Gómez-Ayala, S. L., Stashenko, E., Palma, A., Bahsas, A., and Amaro-Luis, J. M. (2006). “Sequential amino-claisen rearrangement/intramolecular 1,3-dipolar cycloaddition/reductive cleavage approach to the stereoselective synthesis of cis-4-hydroxy-2-aryl-2,3,4,5-tetrahydro-1(1H)-benzazepines,” Synlett 14, 22752277.Google Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. LMGP-Suite Suite of Programs for the Interpretation of X-ray. Experiments, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/Google Scholar
Mighell, A. D., Hubbard, C R., and Stalick, J. K. (1981). NBS* AIDS83: A FORTRAN Program for Crystallographic Data Evaluation, National Bureau of Standards (USA), Technical Note 1141.CrossRefGoogle Scholar
Murahashi, S. I., Mitsui, H., Shiota, T., Tsuda, T., and Watanabe, S. (1990). “Tungstate-catalyzed oxidation of secondary amines to nitrones. α-Substitution of secondary amines via nitrones,” J. Org. Chem. 55, 17361744.CrossRefGoogle Scholar
Palma, A., Yépes, A. F., Leal, S. M., Coronado, C. A., and Escobar, P. (2009). “Synthesis and in vitro activity of new tetrahydronaphtho[1,2-b]azepine derivatives against Trypanosoma cruzi and Leishmania chagasi parasites,” Bioorg. Med. Chem. Lett. 19, 23602363.CrossRefGoogle ScholarPubMed
Rachinger, W. A. (1948). “A correction for the α 1α 2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254255.CrossRefGoogle Scholar
Savitzky, A. and Golay, M. J. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.CrossRefGoogle Scholar