Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T23:42:34.308Z Has data issue: false hasContentIssue false

Synthesis and X-Ray Powder Diffraction Analysis of a New Metallic (but not Superconducting) Copper Oxide: La1.67Sr0.33Cu2O5

Published online by Cambridge University Press:  10 January 2013

T. C. Huang
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, U.S.A.
A. I. Nazzal
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, U.S.A.
Y. Tokura
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, U.S.A.
J. B. Torrance
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, U.S.A.
R. Karimi
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, U.S.A.

Abstract

An ordered oxygen-deficient tetragonal perovskite compound La1.67Sr0.33Cu205 has been synthesized by solid state reaction. X-ray powder diffraction was used to characterize the material. Unit cell parameters least-squares refined from non-overlapping diffraction peaks are a = 10.8696(9)Å, c = 3.8612(6)Å and V = 456.2(1)Å3. X-ray powder data have been obtained for the experimentally observed peak positions corrected for systematic errors, the relative intensities, values of dexp and the Miller indices of both resolved and overlapping reflections. The experimental diffraction pattern was compared to computer simulated patterns calculated from the neutron crystal structure parameters and the non-oxygen-deficient LaCuO3 compound. The figure of merit is F30 = 33.8 (0.018, 48).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E. and Evans, H. T. (1973). “Indexingand Least-Squares Refinement of Powder Diffraction Data”, Report PB 216188, U. S. Department of Commerce, National Technical Information Service, 5286 Port Royal Rd., Springfield, VA 22151.Google Scholar
Bednorz, J. G. and Muller, K. A. (1986). Z. Phys. 64, 189.CrossRefGoogle Scholar
Demazeau, G., Parent, C., Pouchard, M., and Hagenmuller, P. (1972). Mat. Res. Bull. 7, 913.CrossRefGoogle Scholar
Er-Rakho, L., Michel, C., and Raveau, B. (1987). Submitted to J. Solid State Chem.Google Scholar
Huang, T. C. and Parrish, W. (1984). Adv. X-Ray Anal. 27, 45.Google Scholar
Parrish, W. and Huang, T. C. (1980). “Proceeding of Symposium on Accuracy in Powder Diffraction”, Block, S. and Hubbard, C. R. (Eds.), pp. 95110, NBS, Washington, D.C.Google Scholar
Parrish, W., Huang, T. C., and Ayers, G. L. (1984). Adv. X-Ray Anal. 27, 75.Google Scholar
Smith, D. K. (1968). Norelco Reporter XV, 57;Google Scholar
Borg, I. Y. and Smith, D. K. (1969). “Calculated X-Ray Powder Patterns for Silicate Minerals”, Geological Society of America, Boulder, CO.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 60CrossRefGoogle Scholar
Tokura, Y., Torrance, J. B., Nazzal, A. I., Huang, T. C., and Ortiz, C. (1987). J. Amer. Chem. Soc. 109, 7555.CrossRefGoogle Scholar
Torrance, J. B., Tokura, Y., Nazzal, A. I., and Parkin, S. S. P. (1987). Phys. Rev. Lett. 60, 542.CrossRefGoogle Scholar
Wu, M. K., Ashburn, R. J., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z.J., Wang, Y. Q., and Chu, C. W. (1987). Phys. Rev. Lett. 58, 908.CrossRefGoogle Scholar