Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T05:28:22.095Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction data of N1,N2-di(2-hydroxy)benzylidenbenzene-1,2-di-imine, C20H16N2O2

Published online by Cambridge University Press:  22 March 2018

H. A. Camargo*
Affiliation:
Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Facultad de Química Ambiental, Universidad Santo Tomás, Campus Universitario Floridablanca, Santander, Colombia
C. C. Rosas
Affiliation:
Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Facultad de Química Ambiental, Universidad Santo Tomás, Campus Universitario Floridablanca, Santander, Colombia
J. A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE). Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
N. J. Castellanos
Affiliation:
Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30, No. 45-03, Bogotá, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The Schiff base N1,N2-di(2-hydroxy)benzylidenebenzene-1,2-di-imine was prepared from salicylaldehyde and 1,2-diaminobenzene by reflux in ethanol for 6 h obtaining an orange crystalline solid. The Schiff base solid was separated by filtration and washed with ethanol and ethylic ether, and finally, it was dried in a vacuum system for 2 h. The X-ray powder diffraction pattern for this new compound showed that the crystalline compound belongs to the monoclinic system and space group P21/c (No. 14) with refined unit-cell parameters a = 5.9672 (7) Å, b = 16.561 (1) Å, c = 16.337 (2) Å, β = 91.41° (1). The volume of the unit cell is V = 1614.1 (2) Å3.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Aly, M. M., Salem, A. M., Sayed, M. A., and Abdel Aziz, A. A. (2015) “Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities,” Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy 136(Part B), 9931000.CrossRefGoogle ScholarPubMed
Alsalim, T. A., Hadi, J. S., Ali, O. N., Abbo, H. S., and Titinchi, S. J. (2013) “Oxidation of benzoin catalyzed by oxovanadium (IV) Schiff base complexes,” Chem. Central J. 7, 18.CrossRefGoogle ScholarPubMed
Amer, S., El-Wakiel, N., and El-Ghamry, H. (2013) “Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives,” J. Mol. Structure 1049, 326335.CrossRefGoogle Scholar
Bell, D., Davies, M. R., Finney, F. J. L., Geen, G. R., Kincey, P. M., and Mann, I. S. (1996) “The effect of catalyst loading and donor ligands in the Mn(III) salen catalysed chiral epoxidation of chromenes: synthesis of BRL 55834,” Tetrahedron Lett. 37, 38953898.CrossRefGoogle Scholar
Boultif, A. and Loüer, D. (2004). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. crystallogr. 37, 724731.Google Scholar
Chen, L., Cheng, F., Jia, L., Wang, L., Wei, J., Zhang, J., Yao, L., Tang, N., and Wu, J. (2012) “Manganese(III) complexes of novel chiral unsymmetrical BINOL-Salen ligands: synthesis, characterization, and application in asymmetric epoxidation of olefins,” Appl. Catalysis A: General 415–416, 4046.CrossRefGoogle Scholar
Das, P. and Linert, W. (2016) “Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction,” Coord. Chem. Rev. 311, 123.CrossRefGoogle Scholar
De Rosa, M., Lamberti, M., Pellecchia, C., Scettri, A., Villano, R., and Soriente, A. (2006) “An efficient solvent free catalytic oxidation of sulfides to sulfoxides with hydrogen peroxide catalyzed by a binaphthyl-bridged Schiff base titanium complex,” Tetrahedron Lett. 47, 72337235.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Ghosh, P., Kumar, N., Mukhopadhyay, S. K., and Banerjee, P. (2016) “Sensitive and fluorescent Schiff base chemosensor for pico molar level fluoride detection: in vitro study and mimic of logic gate function,” Sensors Actuators B: Chemical 224, 899906.CrossRefGoogle Scholar
Grzegorczyk, M., Kapturkiewicz, A., Sanjuan-Szklarz, F. W., and Nowacki, J. (2014) “Monomeric complexes of Re(CO)3+ ion with tridentate N∩N∩O − ligands – Schiff base derivatives of salicylic aldehyde,” Inorg. Chem. Commun. 46, 103106.CrossRefGoogle Scholar
Gupta, K. C. and Sutar, A. K. (2008) “Catalytic activities of Schiff base transition metal complexes,” Coord. Chem. Rev. 252, 14201450.CrossRefGoogle Scholar
Jacobsen, E. N., Deng, L., Furukawa, Y., and Martínez, L. E. (1994) “Enantioselective catalytic epoxidation of cinnamate esters,” Tetrahedron 50, 43234334.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments”, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/.Google Scholar
Miguell, A. D., Hubberd, C. R., and Stalick, J. K. (1981). “NBS* AIDS80: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Tech. Note 1141.Google Scholar
Mondal, S., Mandal, S. M., Mondal, T. K., and Sinha, C. (2015) “Structural characterization of new Schiff bases of sulfamethoxazole and sulfathiazole, their antibacterial activity and docking computation with DHPS protein structure,” Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy 150, 268279.CrossRefGoogle ScholarPubMed
Pioquinto-Mendoza, J. R., Rosas-Ortiz, J. A., Reyes-Martínez, R., Conelly-Espinosa, P., Toscano, R. A., Germán-Acacio, J. M., Avila-Sorrosa, A., Baldovino-Pantaleón, O., and Morales-Morales, D. (2015) “Synthesis, characterization and molecular structures of Ni(II) complexes derived from Schiff base pyridylimine ligands,” Inorganica Chimica Acta 438, 146152.CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A correction for the α1 α2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.CrossRefGoogle Scholar
Rosu, T., Pahontu, E., Maxim, C., Georgescu, R., Stanica, N., and Gulea, A. (2011) “Some new Cu(II) complexes containing an ON donor Schiff base: synthesis, characterization and antibacterial activity,” Polyhedron 30, 154162.CrossRefGoogle Scholar
Sarkar, N., Bhaumik, P. K., and Chattopadhyay, S. (2016) “Manganese(III) complexes with tetradentate salicylaldimine Shiff bases: synthesis, structure, self assembly and catalase activity,” Polyhedron 115, 3746.CrossRefGoogle Scholar
Saviztky, A. and Golay, M. J. (1964) “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 16271639.Google Scholar
Schiff, H. (1869) “Untersuchungen über Salicinderivate,” Justus Liebigs Annalen der Chemie 150, 193200.CrossRefGoogle Scholar
Shabbir, M., Akhter, Z., Ahmad, I., Ahmed, S., Ismail, H., Mirza, B., McKee, V., and Bolte, M. (2016) “Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases,” J. Mol. Structure 1116, 8492.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.CrossRefGoogle Scholar
Valyaev, D. A., Lavigne, G., and Lugan, N. (2016) “Manganese organometallic compounds in homogeneous catalysis: past, present, and prospects,” Coordination Chem. Rev. 308(Part 2), 191235.CrossRefGoogle Scholar
Wang, W., Daran, J.-C., Poli, R., and Agustin, D. (2016) “OH-substituted tridentate ONO Schiff base ligands and related molybdenum(VI) complexes for solvent-free (ep)oxidation catalysis with TBHP as oxidant,” J. Mol. Catalysis A: Chemical 416, 117126.CrossRefGoogle Scholar
Xia, Q. H., Ge, H. Q., Ye, C. P., Liu, Z. M., and Su, K. X. (2005) “Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation,” Chem. Rev. 105, 16031662.CrossRefGoogle ScholarPubMed
Zoubi, W. A. (2013) “Biological activities of Schiff bases and their complexes: a review of recent works,” Int. J. Organic Chem. 3(3), 24.CrossRefGoogle Scholar
Supplementary material: File

Camargo et al. supplementary material

Camargo et al. supplementary material 1

Download Camargo et al. supplementary material(File)
File 24.4 KB