Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T05:14:11.616Z Has data issue: false hasContentIssue false

Synthesis and Rietveld refinements of new ceramics Sr2CaFe2WO9 and Sr2PbFe2TeO9 perovskites

Published online by Cambridge University Press:  15 March 2018

Abdelhadi El Hachmi
Affiliation:
Univ Hassan 1er, Laboratoire des Sciences des Matériaux, des Milieux et de la modélisation (LS3M), 25000 Khouribga, Morocco
Y. Tamraoui
Affiliation:
Univ Hassan 1er, Laboratoire des Sciences des Matériaux, des Milieux et de la modélisation (LS3M), 25000 Khouribga, Morocco Materials Science and nano–engineering (MSN), University Mohammed VI Polytechnic, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco
Bouchaib Manoun*
Affiliation:
Univ Hassan 1er, Laboratoire des Sciences des Matériaux, des Milieux et de la modélisation (LS3M), 25000 Khouribga, Morocco Materials Science and nano–engineering (MSN), University Mohammed VI Polytechnic, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco
R. Haloui
Affiliation:
Univ Hassan 1er, Laboratoire des Sciences des Matériaux, des Milieux et de la modélisation (LS3M), 25000 Khouribga, Morocco
M.A. Elaamrani
Affiliation:
Univ Hassan 1er, Laboratoire des Sciences des Matériaux, des Milieux et de la modélisation (LS3M), 25000 Khouribga, Morocco
I. Saadoune
Affiliation:
Materials Science and nano–engineering (MSN), University Mohammed VI Polytechnic, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco LCME, FST Marrakech, University Cadi Ayyad, Av. A. Khattabi, 40000 Marrakech, Morocco
L. Bih
Affiliation:
Equipe de Physico–Chimie de la Matière Condensée, PCMC, Faculté des Sciences de Meknès, Université Moulay Ismail, Morocco
P. Lazor
Affiliation:
Department of Earth Sciences, Uppsala University, SE–752 36, Uppsala, Sweden
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Ceramics of Sr2CaFe2WO9 and Sr2PbFe2TeO9 double perovskites have been prepared in polycrystalline form by solid-state technique, in the air. The crystalline structure was analyzed using X-ray powder diffraction (XRPD) at room temperature. Rietveld analysis of XRPD patterns show that both compounds adopt a tetragonal structure with space group I4/m, with unit cell parameters a = 5.5453(1) Å, c = 7.8389(1) Å for Sr2CaFe2WO9, and a = 5.5994(15) Å, c = 7.8979(30) Å for Sr2PbFe2TeO9. A certain degree of anti-site disordering of W and/or Te and Fe on the B –sites have been detected, indicating the presence of a partial amount of W and/or Te at Fe positions and vice versa.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arulraj, A., Ramesha, K., Gopalakrishnan, J., and Rao, C. N. R. N. R. (2000). “Magnetoresistance in the double perovskite Sr2CrMoO6,” J. Solid State Chem. 155(1), 233237.CrossRefGoogle Scholar
Baum, L. A., Stewart, S. J., Mercader, R. C., and Grenèche, J. M. (2004). “Magnetic response and hyperfine magnetic fields at Fe sites of Sr3Fe2MO9 (M=Mo, Te, W, U),Hyperfine Interact. 156/157(1–4), 157163.CrossRefGoogle Scholar
Boultif, A., Loueer, D., and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24(6), 987993.CrossRefGoogle Scholar
Branford, W. R., Clowes, S. K., Bugoslavsky, Y. V., Miyoshi, Y., Cohen, L. F., Berenov, A. V., MacManus-Driscoll, J. L., Rager, J., and Roy, S. B. (2003). “Effect of chemical substitution on the electronic properties of highly aligned thin films of Sr2−xA xFeMoO6 (A = Ca, Ba, La; x = 0, 0.1),” J. Appl. Phys. 94(7), 47144716.Google Scholar
Dass, R. I. and Goodenough, J. B. (2001). “Itinerant to localized electronic transition in Sr2FeMo1−xWxO6,Phys. Rev. B 63(6), 64417.CrossRefGoogle Scholar
Dhahri, A., Dhahri, J., and Oumezzine, M. (2009). “Magnetic and electrical properties of Ba2CrMo1 − xWxO6 double perovskite,” Mater. Lett. 63(1), 121123.Google Scholar
El Hachmi, A., Manoun, B., Tamraoui, Y., Mirinioui, F., Abkar, R., El aamrani, M. A., Saadoune, I., Sajieddine, M., and Lazor, P. (2017). “Temperature induced structural phase transition in Sr3-xCaxFe2TeO9 (0 ⩽x⩽1) probed by Raman and Mossbauer techniques,” J. Mol. Struct. 1141, 484494.Google Scholar
Fleet, M. E. (1976). “Distortion parameters for coordination polyhedra,” Mineral. Mag. 40, 531533.CrossRefGoogle Scholar
Gao, Y., Chang, H., Wu, Q., Wang, H., Pang, Y., Liu, F., Zhu, H., and Yun, Y. (2017). “Optical properties and magnetic properties of antisite-disordered Ni1–xCoxCr2O4 spinels,” Trans. Nonferrous Metals Soc. China 27(4), 863867.Google Scholar
García-Hernández, M., Martínez, J. L., Martínez-Lope, M. J., Casais, M. T., and Alonso, J. A. (2001). “Finding universal correlations between cationic disorder and low field magnetoresistance in FeMo double perovskite series,” Phys. Rev. Lett. 86(11), 24432446.Google Scholar
Glazer, A. M. (1975). “Simple ways of determining perovskite structures,” Acta Crystallogr. Sec. A 31(6), 756762.Google Scholar
Gong, S., Chen, P., and Liu, B. G. (2014). “Structural, electronic, and magnetic properties of double perovskite Pb2CrMO6 (M=Mo, W and Re) from first-principles investigation,” J. Magnetism Magnetic Mater. 349, 7479.Google Scholar
Ivanov, S. A., Eriksson, S. G., Tellgren, R., and Rundlof, H. (2001). “Evolution of the atomic and magnetic structure of Sr3Fe2WO9: a temperature dependent neutron powder diffraction study,” Mater. Res. Bull 36(15), 25852596.Google Scholar
Ivanov, S. A., Eriksson, S. G., Erikssen, J., Tellgren, R., and Rundlof, H. (2004). “Nuclear and magnetic structure of Ba3Fe2WO9,” Mater. Res. Bull., 39(4–5), 615628.Google Scholar
Ivanov, S. A., Eriksson, S. G., Tellgren, R., and Rundlöf, H. (2005). “Structural and magnetic properties of perovskite Ca3Fe2WO9,” J. Solid State Chem. 178(12), 36053614.Google Scholar
Ivanov, S. A., Nordblad, P., Eriksson, S. G., Tellgren, R., and Rundlöf, H. (2007). “The magnetoelectric perovskite Sr3Fe2TeO9: an insight from magnetic measurements and neutron powder diffraction,” Mater. Res. Bull. 42(4), 776789.Google Scholar
Kawanaka, H., Hase, I., Toyama, S., and Nishihara, Y. (2000). “Iron spin state of double perovskite oxide Sr2FeWO6,” Physica B: Condens. Matter 281–282, 518520.CrossRefGoogle Scholar
Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., and Tokura, Y. (1998). “Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure,” Nature 395(6703), 677680.Google Scholar
Manoun, B., Benmokhtar, S., Bih, L., Azrour, M., Ezzahi, A., Ider, A., Azdouz, M., Annersten, H., and Lazor, P. (2011). “Synthesis, structure, and high temperature Mössbauer and Raman spectroscopy studies of Ba1.6Sr1.4Fe2WO9 double perovskite,” J. Alloys Compounds 509(1), 6671.Google Scholar
Philipp, J. B., Majewski, P., Alff, L., Erb, A., Gross, R., Graf, T., Brandt, M. S., Simon, J., Walther, T., Mader, W., Topwal, D., and Sarma, D. D. (2003). “Structural and doping effects in the half-metallic double perovskite A 2CrWO6 (A=Sr, Ba, and Ca),” Phys. Rev. B 68(14), 144431.Google Scholar
Pinacca, R. M., Viola, M. C., Alonso, J. A., Pedregosa, J. C., and Carbonio, R. E. (2005). “On the new ferrimagnetic Sr3Fe2UO9 double perovskite with T-c above room temperature: a neutron diffraction study,” J. Mater. Chem. 15(43), 46484653.Google Scholar
Ray, S., Kumar, A., Majumdar, S., Sampathkumaran, E. V., and Sarma, D. D. (2001). “Transport and magnetic properties of Sr2FeMoxW1−xO6,” J. Phys., Condens. Matter. 13(4), 607616.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2(2), 6571.Google Scholar
Rodriguez-Carvajal, J. (1990). “Powder diffraction,” In Satellite meeting of the 15th congress of IUCr, Toulouse, France, p. 127.Google Scholar
Roisnel, T., and Rodríquez-Carvajal, J. (2001). WinPLOTR: “A windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum 378–381, 118123.Google Scholar
Sánchez, D., Alonso, J. A., García-Hernández, M., Martínez-Lope, M. J., Martínez, J. L., and Mellergård, A. (2002). “Origin of neutron magnetic scattering in antisite-disordered Sr2FeMoO6 double perovskites,” Phys. Rev. B – Condens. Matter Mat. Phys. 65(10), 10442611044268.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Section A 32(5), 751767.CrossRefGoogle Scholar
Sher, F. and Attfield, J. P. (2006). “Synthesis, structure and magnetic properties of Ba2CrMoO6,” Solid State Sci. 8(3–4), 277279.CrossRefGoogle Scholar
Tang, Y., Hunter, E. C., Battle, P. D., Sena, R. P., Hadermann, J., Avdeev, M., and Cadogan, J. M. (2016). “Structural chemistry and magnetic properties of the perovskite Sr3Fe2TeO9,” J. Solid State Chem. 242, 8695.Google Scholar
Viola, M. D. C., Augsburger, M. S., Pinacca, R. M., Pedregosa, J. C., Carbonio, R. E., and Mercader, R. C. (2003). “Order-disorder at Fe sites in SrFe2/31/3O3 (B″ = Mo, W, Te, U) tetragonal double perovskites,” J. Solid State Chem. 175(2), 252257.Google Scholar
Viola, M. C., Alonso, J. A., Pedregosa, J. C., and Carbonio, R. E. (2005). “Crystal structure and magnetism of the double perovskite Sr3Fe2MoO9: a neutron diffraction study,” Eur. J. Inorg. Chem. (2005) (8), 15591564.Google Scholar
Woodward, P. M. (1997). “Octahedral tilting in perovskites. II. Structure stabilizing forces,” Acta Crystallogr. B 53(1), 4466.Google Scholar
Woodward, P., Hoffmann, R.-D., and Sleight, A. W. (1994). “Order-disorder in A2M 3M 5O6 perovskites,” J. Mat. Res. 9(8), 21182127.CrossRefGoogle Scholar
Supplementary material: File

El Hachmi et al. supplementary material

El Hachmi et al. supplementary material 1

Download El Hachmi et al. supplementary material(File)
File 59.8 KB