Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T03:14:51.093Z Has data issue: false hasContentIssue false

Synthesis and optical properties of single-crystalline SnS1−xSex nanobelts

Published online by Cambridge University Press:  04 November 2020

Shengru Wang
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
Xiaofang Lai
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
Bingsheng Du
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
Junhao Ma
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
Peihua Wang
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
Jikang Jian*
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

In this work, SnS1−xSex ternary nanobelts were synthesized by a facile hydrothermal method without the assistance of surfactants. The structure, morphology, microstructure, compositions, chemical valences, phonon modes, and optical band gaps of the SnS1−xSex nanobelts were characterized in detail. The results indicate that the SnS1−xSex nanobelts have uniform one-dimensional morphology and are single crystals with high crystallinity. Se is incorporated into the SnS lattice to substitute for S-forming ternary SnS1−xSex alloy. With the increase of Se doping concentration, the optical band gaps of the nanobelts gradually decrease from 1.15 to 1.01 eV, confirming the tunable optical property achieved here.

Type
Technical Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baby, B. H. and Mohan, D. B. (2019). “The effect of in-situ and post deposition annealing towards the structural optimization studies of RF sputtered SnS and Sn2S3 thin films for solar cell application,” Sol Energy 189, 207218.CrossRefGoogle Scholar
Biçer, M. and Şişman, İ. (2011). “Electrodeposition and growth mechanism of SnSe thin films,” Appl. Surf. Sci. 257, 29442949.CrossRefGoogle Scholar
Biswas, K., He, J. Q., Blum, I. D., Wu, C. I., Hogan, T. P., Seidman, D. N., Dravid, V. P., and Kanatzidis, M. G. (2012). “High-performance bulk thermoelectrics with all-scale hierarchical architectures,” Nature 489, 414418.CrossRefGoogle ScholarPubMed
Butt, F. K., Cao, C. B., Khan, W. S., Ali, Z., Ahmed, R., Idrees, F., Aslam, I., Tanveer, M., Li, J. L., Zaman, S., and Mahmood, T. (2012). “Synthesis of highly pure single crystalline SnSe nanostructures by thermal evaporation and condensation route,” Mater. Chem. Phys. 137, 565570.CrossRefGoogle Scholar
Cao, M., Yao, K. F., Guan, Y. S., Shi, H. Z., Yang, W. G., Huang, J., Sun, Y., Hao, J. M., Wang, L. J., Shen, Y., and Dai, N. (2019). “Template-free electrodeposition of SnS nanotubes and their photoelectrochemical properties,” Mater. Lett. 250, 186188.CrossRefGoogle Scholar
Chen, X. L., Cao, Y. G., Lan, Y. C., Xu, X. P., Li, J. Q., Lu, K. Q., Jiang, P. Z., Xu, T., Bai, Z. G., Yu, Y. D., and Liang, J. K. (2000). “Synthesis and structure of nanocrystal-assembled bulk GaN,” J. Cryst. Growth 209, 208212.10.1016/S0022-0248(99)00522-9CrossRefGoogle Scholar
Cheng, S. Y. and Conibeer, G. (2011). “Physical properties of very thin SnS films deposited by thermal evaporation,” Thin Solid Films 520, 837841.CrossRefGoogle Scholar
Cho, K. H. and Sung, Y. M. (2013). “Self-catalytic solution–liquid–liquid–solid (SLLS) growth of tapered SnS nanorods,” Nanoscale 5, 36903697.CrossRefGoogle ScholarPubMed
Franzman, M. A., Thompson, M. E., and Brutchey, R. L. (2010). “Solution-phase synthesis of SnSe nanocrystals for use in solar cells,” J. Am. Chem. Soc. 132, 40604406.CrossRefGoogle ScholarPubMed
Guo, J., Jian, J. K., Liu, J., Cao, B. L., Lei, R. B., Zhang, Z. H., Song, B., and Zhao, H. Z. (2017). “Synthesis of SnSe nanobelts and the enhanced thermoelectric performance in its hot-pressed bulk composite,” Nano Energy 38, 569575.CrossRefGoogle Scholar
He, W. K., Wang, D. Y., Wu, H. J., Xiao, Y., Zhang, Y., He, D. S., Feng, Y., Hao, Y. J., Dong, J. F., Chetty, R., Hao, L. J., Chen, D. F., Qin, J. F., Yang, Q., Li, X., Song, J. M., Zhu, Y. C., Xu, W., Niu, C. L., Li, X., Wang, G. T., Liu, C., Ohta, M., Pennycook, S. J., He, J. Q., Li, J. F., and Zhao, L. D. (2019). “High thermoelectric performance in low-cost SnS0.91Se0.09 crystals,” Science 365, 14181424.10.1126/science.aax5123CrossRefGoogle ScholarPubMed
Herron, S. M., Tanskanen, J. T., Roelofs, K. E., and Bent, S. F. (2014). “Highly textured Tin(II) sulfide thin films formed from sheetlike nanocrystal inks,” Chem. Mater. 26, 71067113.CrossRefGoogle Scholar
Iqbal, M. Z., Wang, F. P., Rafique, M. Y., Ali, S., Farooq, M. H., and Ellahi, M. (2013). “Hydrothermal synthesis, characterization and hydrogen storage of SnS nanorods,” Mater. Lett. 106, 3336.CrossRefGoogle Scholar
Kafashan, H., Azizieh, M., and Balak, Z. (2017). “Electrochemical synthesis of nanostructured Se-doped SnS: effect of Se-dopant on surface characterizations,” Appl. Surf. Sci. 410, 186195.CrossRefGoogle Scholar
Khan, M. D., Aamir, M., Murtaza, G., Malik, M. A., and Revaprasadu, N. (2018). “Structural investigations of SnS1-xSex solid solution synthesized from chalcogeno-carboxylate complexes of organo-tin by colloidal and solvent-less routes,” Dalton Trans. 47, 1002510034.CrossRefGoogle ScholarPubMed
Li, L. D., Lou, Z., and Shen, G. Z. (2017a). “Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures,” Adv. Funct. Mater. 28, 1705389.CrossRefGoogle Scholar
Li, W., Zheng, L. L., Ge, B. H., Lin, S. Q., Zhang, X. Y., Chen, Z. W., Chang, Y. J., and Pei, Y. Z. (2017b). “Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects,” Adv Mater. 29, 1605887.CrossRefGoogle Scholar
Liu, J., Jian, J. K., Yu, Z. Q., Zhang, Z. H., Cao, B. L., and Du, B. S. (2017). “Catalyst-free vapor phase growth of ultralong SnSe single-crystalline nanowires,” Cryst. Growth Des. 17, 61636168.10.1021/acs.cgd.7b01119CrossRefGoogle Scholar
Lu, J., Nan, C. Y., Li, L. H., Peng, Q., and Li, Y. D. (2012). “Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries,” Nano Res. 6, 5564.CrossRefGoogle Scholar
Lu, C. L., Zhang, Y. W., Zhang, L., and Yin, Q. (2019). “C/SnS bilayer structures fabricated via electrodeposition,” Appl. Surf. Sci. 484, 560567.CrossRefGoogle Scholar
Price, L. S., Parkin, I. P., Hardy, A. M. E., and Clark, R. J. H. (1999). “Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass,” Chem. Mater. 11, 17921799.CrossRefGoogle Scholar
Ramakrishna Reddy, K. T., Koteswara Reddy, N., and Miles, R. W. (2006). “Photovoltaic properties of SnS based solar cells,” Sol. Energ. Mat. Sol. C 90, 30413046.CrossRefGoogle Scholar
Reddy, T. S. and Kumar, M. C. S. (2016). “Effect of substrate temperature on the physical properties of co-evaporated Sn2S3 thin films,” Ceram. Int. 42, 1226212269.CrossRefGoogle Scholar
Sarkar, A. S., Mushtaq, A., Kushavah, D., and Pal, S. K. (2020). “Liquid exfoliation of electronic grade ultrathin tin(II) sulfide (SnS) with intriguing optical response,” Npj 2D Mater. Appl. 4, 19.CrossRefGoogle Scholar
Sohila, S., Rajalakshmi, M., Ghosh, C., Arora, A. K., and Muthamizhchelvan, C. (2011). “Optical and Raman scattering studies on SnS nanoparticles,” J. Alloys Compd. 509, 58435847.CrossRefGoogle Scholar
Steichen, M., Djemour, R., Gütay, L., Guillot, J., Siebentritt, S., and Dale, P. J. (2013). “Direct synthesis of single-phase p-type SnS by electrodeposition from a dicyanamide ionic liquid at high temperature for thin film solar cells,” J. Phys. Chem. C 117, 43834393.CrossRefGoogle Scholar
Suryawanshi, S. R., Warule, S. S., Patil, S. S., Patil, K. R., and More, M. A. (2014). “Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior,” ACS Appl. Mater. Interfaces 6, 20182025.CrossRefGoogle ScholarPubMed
Tan, Q., Zhao, L. D., Li, J. F., Wu, C. F., Wei, T. R., Xing, Z. B., and Kanatzidis, M. G. (2014). “Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS,” J. Mater. Chem. A 2, 1730217306.CrossRefGoogle Scholar
Vidal, J., Lany, S., d'Avezac, M., Zunger, A., Zakutayev, A., Francis, J., and Tate, J. (2012). “Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS,” Appl. Phys. Lett. 100, 032104.CrossRefGoogle Scholar
Wang, Q. S., Yao Wen, Y., Yao, F. R., Huang, Y., Wang, Z. X., Li, M. L., Zhan, X. Y., Xu, K., Wang, F. M., Wang, F., Li, J., Liu, K. H., Jiang, C., Liu, F. Q., and He, J. (2015). “BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection,” Small 11, 53885394.CrossRefGoogle ScholarPubMed
Wei, H., Su, Y. J., Chen, S. Z., Lin, Y., Yang, Z., Chen, X. S., and Zhang, Y. F. (2011). “Novel SnSxSe1-x nanocrystals with tunable band gap: experimental and first-principles calculations,” J. Mater. Chem. 21, 1260512608.CrossRefGoogle Scholar
Yao, J. D., Zheng, Z. Q., and Yang, G. W. (2017). “All-layered 2D optoelectronics: a high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes,” Adv. Funct. Mater. 27, 1701823.CrossRefGoogle Scholar
Yue, G. H., Lin, Y. D., Wen, X., Wang, L. S., Chen, Y. Z., and Peng, D. L. (2011). “Synthesis and characterization of the SnS nanowires via chemical vapor deposition,” Appl. Phys. A 106, 8791.CrossRefGoogle Scholar
Zhang, J. B., Gao, J. B., Church, C. P., Miller, E. M., Luther, J. M., Klimov, V. I., and Beard, M. C. (2014). “PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere,” Nano Lett. 14, 60106015.CrossRefGoogle ScholarPubMed
Zhao, N., Osedach, T. P., Chang, L. Y., Geyer, S. M., Wanger, D., Binda, M. T., Arango, A. C., Bawendi, M. G., and Bulovic, V. (2010). “Colloidal PbS quantum dot solar cells with high fill factor,” ACS Nano 4, 37433752.CrossRefGoogle ScholarPubMed
Zhao, L. D., Lo, S. H., Zhang, Y. S., Sun, H., Tan, G. J., Uher, C., Wolverton, C., Dravid, V. P., and Kanatzidis, M. G. (2014). “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508, 373377.CrossRefGoogle ScholarPubMed
Zhou, X., Gan, L., Zhang, Q., Xiong, X., Li, H. Q., Zhong, Z. Q., Han, J. B., and Zhai, T. Y. (2016). “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” J. Mater. Chem. C 4, 21112116.CrossRefGoogle Scholar