Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T05:45:52.767Z Has data issue: false hasContentIssue false

Synthesis and crystallochemistry of Na4CrNi(PO4)3

Published online by Cambridge University Press:  06 March 2012

B. Manoun*
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II-Mohammédia, Faculté des Sciences Ben M’Sik, Casablanca, Morocco
A. El Jazouli
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II-Mohammédia, Faculté des Sciences Ben M’Sik, Casablanca, Morocco
S. Krimi
Affiliation:
Laboratoire de Recherche sur la Physico-chimie de l’Etat Solide LARPES, Département de Chimie, Faculté des Sciences Ain Chock, Casablanca, Morocco
A. Lachgar
Affiliation:
Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109
*
a)Author to whom correspondence should be addressed; Electronic mail: [email protected]. Current address: Center for the Study of Matter at Extreme Conditions, U.P., VH-140, Miami, Florida 33199.

Abstract

Na4CrNi(PO4)3 orthophosphate powder was prepared from acid solutions of NiO, Na2CO3 and aqueous solutions of Cr(NO3)3.9H2O, and (NH4)2HPO4 at a final temperature of 750 °C. The hexagonal unit cell parameters were determined to be ah≈8.789 Å and ch≈21.481 Å in space group R3¯c. These parameters were compared to those of Na4AA(PO4)3 (AA=CrMg, CrCo, TiNa, ZrNa). The linear variations of these parameters versus the mean A cation radius (rAA) are consistent with the atomic distribution found for the structure of Na4NiCr(PO4)3. The ah and ch parameters are functions of the An+ ion size.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boilot, J. P., Gollin, G., and Comes, R. (1983). “Zirconium deficiency in Nasicon-type compounds: crystal structure of Na5Zr(PO4)3,J. Solid State Chem. JSSCBI 50, 9199. jss, JSSCBI CrossRefGoogle Scholar
Delmas, C., Cherkaoui, F., and Hagenmuller, P. (1986). “Ionic conductivity in a new nasicon related solid solution: Na3+yCr2−yMgy(PO4)3. An optical characterization of the skeleton covalency,” Mater. Res. Bull. MRBUAC 21, 469. mrb, MRBUAC CrossRefGoogle Scholar
El Kinani, H. (2000). “Etude structurale de quelques phosphates vitreux ou cristallisés. I—Les verres Na2O-Al2O3-TiO2-P2O5. II—Les phosphates de type Nasicon: NaxAyCrz(PO4)3 (A=Ca. Co),” DESA de Chimie, Casablanca.Google Scholar
Goodenough, J. B., Hong, H. Y. P., and Kafalas, J. (1976). “Fast Na+-ion transport in skeleton structures,” Mater. Res. Bull. MRBUAC 19, 203220. mrb, MRBUAC CrossRefGoogle Scholar
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,J. Solid State Chem. JSSCBI 105, 561566. jss, JSSCBI CrossRefGoogle Scholar
Le Polles, G., Parent, C., Olazcuaga, R., Le Flem, G., and Hagenmuller, P. (1988). “Luminescence du cuivre monovalent dans les phosphates de zirconium de structure Nasicon,” C. R. Acad. Sci. Paris. ZZZZZZ 306, Se´rie II. 765–769.Google Scholar
Manoun, B., Krimi, S., El Jazouli, A., and Lachgar, A. (in progress). “The structure of Na4CrNi(PO4)3.”Google Scholar
Rodrigo, J. L., Carrasco, P., and Alamo, J. (1989). “Thermal expansion of NaTi2(PO4)3 studied by Rietveld method from X-ray diffraction data,” Mater. Res. Bull. MRBUAC 24, 611618. mrb, MRBUAC CrossRefGoogle Scholar
Rodrigo, J. L., and Alamo, J. (1991). “Phase transition in NaSn2(PO4)3 and thermal expansion of NaM2IV(PO4)3 MIV=Ti. Sn. Zr,” Mater. Res. Bull. MRBUAC 26, 475480. mrb, MRBUAC CrossRefGoogle Scholar
Shannon, R. D., and Prewitt, C. T. (1969). “Effective ionic radii in oxides and Fluorides,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 25, 925946. acb, ACBCAR CrossRefGoogle Scholar