Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T21:21:59.092Z Has data issue: false hasContentIssue false

Synthesis and characterization of zinc sulfide hollow microspheres

Published online by Cambridge University Press:  29 February 2012

Wang Jun
Affiliation:
Department of Physics, Xinjiang University, Urumqi 830046, Xinjiang, People’s Republic of China
Song Bo
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Wang Wen-jun
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Wu Rong
Affiliation:
Department of Physics, Xinjiang University, Urumqi 830046, Xinjiang, People’s Republic of China
Sun Yan-fei
Affiliation:
Department of Physics, Xinjiang University, Urumqi 830046, Xinjiang, People’s Republic of China
Zheng Yu-feng
Affiliation:
Department of Physics, Xinjiang University, Urumqi 830046, Xinjiang, People’s Republic of China
Jian Ji-kang*
Affiliation:
Department of Physics, Xinjiang University, Urumqi 830046, Xinjiang, People’s Republic of China
*
a)Author to whom correspondence should be addressed. Department of Physics, Xinjiang University, Urumqi 830046, Xinjiang, P.R. China. Electronic mail: [email protected]

Abstract

The successful synthesis of ZnS hollow microspheres by a solvothermal route is reported. The synthesis was achieved by a proper selection of a sulfur source, i.e., Na2S2O3⋅5H2O or (NH2)2CS, to react with Zn(CH3COO)2⋅2H2O in mixed solvents of ethylene glycol and deionized water. The ZnS products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence spectroscopy. XRD identified the ZnS products to have either zinc blende or wurtzite structure. SEM images revealed hollow ZnS microspheres with 1 to 2 μm diameters and 100 to 200 nm shell thicknesses. TEM images confirmed that the hollow ZnS microspheres were assembled by ZnS crystalline nanocrystallites. The room-temperature photoluminescence spectrum of the zinc blende hollow microspheres showed a strong green emission at 514 nm and weak emission at 379 nm.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bredol, M. and Merikhi, J. (1998). “ZnS precipitation: Morphology control,” J. Mater. Sci.JMTSAS10.1023/A:1004396519134 33, 471476.CrossRefGoogle Scholar
Calandra, P., Goffredi, M., and Turco Liveri, V. (1999). “Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy,” Colloids Surf., ACPEAEH10.1016/S0927-7757(99)00256-3 160, 913.CrossRefGoogle Scholar
Chai, L., Du, J., Xiong, S., Li, H., Zhu, Y., and Qian, Y. (2007). “Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique,” J. Phys. Chem. CJPCCCK 111, 1265812662.CrossRefGoogle Scholar
Gao, X., Zhang, J., and Zhang, L. (2002). “Hollow sphere selenium nanoparticles: Their in-vitro anti hydroxyl radical effect,” Adv. Mater. (Weinheim, Ger.)ADVMEW10.1002/1521-4095(20020219)14:4<290::AID-ADMA290>3.0.CO;2-U 14, 290293.3.0.CO;2-U>CrossRefGoogle Scholar
Hu, J. -S., Ren, L. -L., Guo, Y. -G., Liang, H. -P., Cao, A. -M., Wan, L. -J., and Bai, C. -L. (2005). “Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles,” Angew. Chem., Int. Ed. Engl.ACIEAY 44, 12691273.CrossRefGoogle ScholarPubMed
ICDD (2002). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune W. F., Newton Square, PA 19073–3272.Google Scholar
Jiang, C., Zhang, W., Zou, G., Yu, W., and Qian, Y. (2007). “Hydrothermal synthesis and characterization of ZnS microspheres and hollow nanospheres,” Mater. Chem. Phys.MCHPDR 103, 2427.CrossRefGoogle Scholar
Kumbhojkar, N., Nikesh, V. V., Kshirsagar, A., and Mahamuni, S. (2000). “Photophysical properties of ZnS nanoclusters,” J. Appl. Phys.JAPIAU10.1063/1.1321027 88, 62606264.CrossRefGoogle Scholar
Li, J., Stevens, R., Delzeit, L., Ng, H. T., Cassell, A., Han, J., and Meyyappan, M. (2002). “Electronic properties of multiwalled carbon nanotubes in an embedded vertical array,” Appl. Phys. Lett.APPLAB10.1063/1.1496494 81, 910912.CrossRefGoogle Scholar
Li, Y., Li, X., Yang, C., and Li, Y. (2004). “Ligand-controlling synthesis and ordered assembly of ZnS nanorods and nanodots,” J. Phys. Chem. BJPCBFK10.1021/jp0489018 108, 1600216011.CrossRefGoogle Scholar
Li, Z., Liu, B., Li, X., Yu, S., Wang, L., Hou, Y., Zou, Y., Yao, M., Li, Q., Zou, B., Cui, T., Zou, G., Wang, G., and Liu, Y. (2007). “Synthesis of ZnS nanocrystals with controllable structure and morphology and their photoluminescence property,” Nanotechnology 18, 255602.CrossRefGoogle Scholar
Liu, J. Z., Yan, P. X., Yue, G. H., Kong, L. B., Zhuo, R. F., and Qu, D. M. (2006). “Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition,” Mater. Lett. 60, 34713476.CrossRefGoogle Scholar
Liu, X., Cui, J., Zhang, L., Yu, W., Guo, F., and Qian, Y. (2006). “A solvothermal route to semiconductor ZnS micrometer hollow spheres with strong photoluminescence properties,” Mater. Lett. 60, 24652469.CrossRefGoogle Scholar
Luo, Y., Duan, G., Ye, M., Zhang, Y., and Li, G. (2008). “Poly (ethylene glycol)-mediated synthesis of hollow ZnS microspheres,” J. Phys. Chem. CJPCCCK 112, 23492352.CrossRefGoogle Scholar
Ma, Y., Qi, L., Ma, J., and Cheng, H. (2003). “Facile synthesis of hollow ZnS nanospheres in block copolymer solutions,” LangmuirLANGD5 19, 40404042.CrossRefGoogle Scholar
Millet, P., Henry, J. Y., Mila, F., and Galy, J. (1999). “Vanadium (IV)–oxide nanotubes: Crystal structure of the low-dimensional quantum magnet Na2V3O7,” J. Solid State Chem.JSSCBI10.1006/jssc.1999.8473 147, 676678.CrossRefGoogle Scholar
Panda, S. K. and Chaudhuri, S. (2007). “Chelating ligand-mediated synthesis of hollow ZnS microspheres and its optical properties,” J. Colloid Interface Sci.JCISA5 313, 338344.CrossRefGoogle ScholarPubMed
Peng, Q., Dong, Y., and Li, Y. (2003). “ZnSe semiconductor hollow microspheres,” Angew. Chem., Int. Ed. Engl.ACIEAY 42, 30273030.CrossRefGoogle ScholarPubMed
Qian, Y., Su, Y., Xie, Y., Chen, Q., Chen, Z., and Yang, L. (1995). “Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite,” Mater. Res. Bull.MRBUAC 30, 601605.Google Scholar
Sougata, P., Biplab, G., and Pranab, S. (2008). “Size-dependent properties of hollow ZnS nanoclusters,” J. Phys. Chem. CJPCCCK 112, 63076312.Google Scholar
Tong, H., Zhu, Y. -J., Yang, L. -X., Li, L., Zhang, L., Chang, J., An, L. -Q., and Wang, S. -W. (2007). “Self-assembled ZnS nanostructured spheres: controllable crystal phase and morphology,” J. Phys. Chem. CJPCCCK 111, 38933900.CrossRefGoogle Scholar
Wang, Q., Xu, Z., Yin, H., and Nie, Q. (2005). “Fabrication of transition metal sulfides nanocrystallites via an ethylenediamine-assisted route,” Mater. Chem. Phys.MCHPDR 90, 7377.CrossRefGoogle Scholar
Wang, S. -M., Wang, Q. -S., and Wan, Q. -L. (2008). “Template-directed synthesis of MS (M=Cd,Zn) hollow microsphere via hydrothermal method,” J. Cryst. GrowthJCRGAE 310, 24392443.CrossRefGoogle Scholar
Yamamoto, T., Kishimoto, S., and Iida, S. (2001). “Control of valence states for ZnS by triple-codoping method,” Physica B 308–310, 916919.CrossRefGoogle Scholar
Yao, W. T., Yu, S. H., Pan, L., Li, J., Wu, Q. S., Zhang, L., and Jiang, J. (2005). “Flexible wurtzite-type ZnS nanobelts with quantum-size effects: A diethylenetriamine-assisted solvothermal approach,” SmallSMALBC10.1002/smll.200400079 1, 320325.CrossRefGoogle ScholarPubMed
Yao, W. -T., Yu, S. -H., and Wu, Q. -S. (2007). “From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: A mild-solution chemistry approach,” Adv. Funct. Mater.AFMDC610.1002/adfm.200600239 17, 623631.CrossRefGoogle Scholar
Yu, S. H. and Yoshimura, M. (2002). “Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS (NH2CH2CH2NH2)0.5,” Adv. Mater. (Weinheim, Ger.)ADVMEW10.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-6 14, 296300.3.0.CO;2-6>CrossRefGoogle Scholar
Zhang, H., Zhang, S., Pan, S., Li, G., and Hou, J. (2004). “A simple solution route to ZnS nanotubes and hollow nanospheres and their optical properties,” NanotechnologyNNOTER10.1088/0957-4484/15/8/012 15, 945948.CrossRefGoogle Scholar
Zhao, Q., Xie, Y., Zhang, Z., and Bai, X. (2007). “Size-selective synthesis of zinc sulfide hierarchical structures and their photocatalytic activity,” Cryst. Growth Des.CGDEFU 7, 153158.CrossRefGoogle Scholar
Zhou, G. -T., Wang, X., and Yu, J. C. (2005). “A low-temperature and mild solvothermal route to the synthesis of wurtzite-type ZnS with single-crystalline nanoplate-like morphology,” Cryst. Growth Des.CGDEFU10.1021/cg050007y 5, 17611765.CrossRefGoogle Scholar
Zhou, H., Fan, T., Zhang, D., Guo, Q., and Ogawa, H. (2007). “Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures,” Chem. Mater.CMATEX 19, 21442146.CrossRefGoogle Scholar