Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T18:08:24.693Z Has data issue: false hasContentIssue false

Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln=Dy, Ho, Er, Tm, Yb)

Published online by Cambridge University Press:  01 March 2012

Min Li
Affiliation:
Department of Chemistry, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China
Wenxia Yuan
Affiliation:
Department of Chemistry, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China
Jingfang Wang
Affiliation:
Department of Chemistry, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China
Cong Gu
Affiliation:
Department of Chemistry, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China
Huaizhou Zhao
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China

Abstract

Trigonal rare-earth dioxymonocyanamides Ln2O2CN2 (Ln=Dy, Ho, Er, Tm, Yb) were synthesized by the modified solid-state metathesis (SSM) method, in which Ln2O3 and melamine C3N6H6 were mixed and heated at 850 °C in vacuumed silica ampoules. Possible chemical reaction pathways are proposed. X-ray diffraction (XRD) patterns of Ln2O2CN2 were refined using the Rietveld method. Compounds Ln2O2CN2 crystallize in the trigonal system with space group P3m1, Z=1, and cell parameters of a and c varying from 3.7267(1) to 3.6407(1) Å and from 8.1848(3) to 8.1152(3) Å, respectively, as Ln atoms change from Dy to Yb. These compounds have stacking structures of Ln2O22+ and CN22− layers, similar to those of previously reported compounds Ln2O2CN2 (Ln=Ce, Pr, Nd, Sm, Eu, Gd). The presence of CN22− ions has been confirmed by infrared spectroscopy, with two characteristic peaks in the vicinity of 651 and 2075 cm−1.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Loüer, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889891006441 24, 987993.CrossRefGoogle Scholar
Deb, S. K. and Yoffe, A. D. (1959). “Inorganic cyanamides physical and optical properties, and decomposition,” Trans. Faraday Soc.TFSOA4 55, 106113.CrossRefGoogle Scholar
Eick, H. A. (1960). “The crystal structure and lattice parameters of some rare earth mono-seleno oxides,” Acta Crystallogr.ACCRA9 13, 161.CrossRefGoogle Scholar
Faucher, M., Pannetier, J., Charreire, Y., and Caro, P. (1982). “Refinement of Nd2O3 and Nd2O2S structures at 4 K,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 38, 344346.CrossRefGoogle Scholar
Fitzmaurice, J. C., Hector, A. L., and Parkin, I. P. (1993). “Low-temperature routes to early transition-metal nitrides,” J. Chem. Soc. Dalton Trans.JCDTBI 1993, 24352438.CrossRefGoogle Scholar
Gillan, E. G. and Kaner, R. B. (1996). “Syntheses of refractory ceramics via rapid metathesis reactions between solid-state precursors,” Chem. Mater.CMATEX10.1021/cm950232a 8, 333343.CrossRefGoogle Scholar
Hashimoto, Y., Takahashi, M., Kikkawa, S., and Kanamaru, F. (1995). “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem.JSSCBI 114, 592594.CrossRefGoogle Scholar
Hashimoto, Y., Takahashi, M., Kikkawa, S., and Kanamaru, F. (1996). “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamide, Ln 2O2CN2 (Ln=Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem.JSSCBI 125, 3742.CrossRefGoogle Scholar
He, M. and Chen, X. L. (2002). “Synthesis, structure and thermal stability of Li3AlB2O6,” J. Solid State Chem.JSSCBI 163, 369376.CrossRefGoogle Scholar
Janes, R. A., Low, M. A., and Kaner, R. B. (2003). “Rapid solid-state metathesis route to aluminum nitride,” Inorg. Chem.INOCAJ 42, 27142719.CrossRefGoogle ScholarPubMed
Liu, G. K. and Bernard, J. (2005). Spectroscopic Properties of Rare Earths in Optical Materials (Springer, Berlin).Google Scholar
Nesbitt, E. A. and Wernick, J. H. (1973). Rare Earth Permanent Magnets (Academic, New York).Google Scholar
Olafsen, A., Larsson, A. K., Fjellvag, H., and Hauback, B. C. (2001). “On the crystal of Ln 2O2CO3 (Ln=La and Nd),” Solid State Chem.29CBA6 158, 1424.CrossRefGoogle Scholar
Philips Electronics (2002). HIGHSCORE Version 1.0, Koninklijke Philips Electronics NV, Almeno, The Netherlands.Google Scholar
Rodriguez-Carvajal, J. (2003). FULLPROF Version 2.45. Institut Laue-Langevin, Grenoble, France.Google Scholar
Samsonov, G. V. (1965). High-Temperature Compounds of Rare Earth Metals with Nonmetals (Consultants Bureau, New York).Google Scholar
Sawyer, J. O., Caro, P., and Eyring, L. (1971). “Herstellung, analyse und röntgenographische identifizierung der dioxymonocarbonate des lanthans und der lanthanidenelemente,” Monatsch. Chem.MOCMB7 103, 333354.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr.JACGAR10.1107/S002188987901178X 12, 6065.CrossRefGoogle Scholar
Takeda, T., Hatta, N., and Kikkawa, S. (2006). “Gel nitridation preparation and luminescence property of Eu-doped RE 2O2CN2 (RE=La and Gd) phosphors,” Chem. Lett.CMLTAG10.1246/cl.2006.988 35, 988989.CrossRefGoogle Scholar
Ute, B. and Wolfgang, S. (1994). “Syntheses, crystal structures, and vibrational spectroscopic properties of MgCN2, SrCN2, and BaCN2,” J. Alloys Compd.JALCEU 206, 179184.Google Scholar
Wu, L. and Chen, X. L. (2002). “Phase relations in the system Li2O–MgO–B2O3,” J. Alloys Compd.JALCEU 333, 154158.CrossRefGoogle Scholar
Yao, L. D., Yu, R. C., Li, F. Y., and Chen, J. (2004). “Study of the products of C3N6H6 treated at high temperature and high pressure,” J. High Press. Phys.GWXUER 18, 220224.Google Scholar
Yi, X. W., Huang, C. H., Wang, W., Liu, Y. J., and Wu, J. G. (1981). Series of Inorganic Chemistry (Science Press, Beijing).Google Scholar
Zachariasen, W. H. (1949). “Crystal chemical studies of the 5f-series of elements. XII. New compounds representing known structure types,” Acta Crystallogr.ACCRA910.1107/S0365110X49001016 2, 388390.CrossRefGoogle Scholar
Zhao, H. Z., Lei, M., Yang, X. A., Jian, J. K., and Chen, X. L. (2005). “Route to GaN and VN assisted by carbothermal reduction process,” J. Am. Chem. Soc.JACSAT 27, 1572215723.CrossRefGoogle Scholar