Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T02:00:25.987Z Has data issue: false hasContentIssue false

Synchrotron X-ray studies of metal-organic framework M2(2,5-dihydroxyterephthalate), M = (Mn, Co, Ni, Zn) (MOF74)

Published online by Cambridge University Press:  30 November 2012

W. Wong-Ng*
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Illinois Institute of Technology, Chicago, Illinois 60616
H. Wu
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
M. Suchomel
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4856
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

M2(dhtp)·nH2O (M = Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate), known as MOF74, is a family of excellent sorbent materials for CO2 that contains coordinatively unsaturated metal sites and a honeycomb-like structure featuring a broad one-dimensional channel. This paper describes the structural feature and provides reference X-ray powder diffraction patterns of these four isostructural compounds. The structures were determined using synchrotron diffraction data obtained at beam line 11-BM at the Advanced Photon Source (APS) in the Argonne National Laboratory. The samples were confirmed to be hexagonal R 3 (No. 148). From M = Mn, Co, Ni, to Zn, the lattice parameter a of MOF74 ranges from 26.131 73(4) Å to 26.5738(2) Å, c from 6.651 97(5) to 6.808 83(8) Å, and V ranges from 3948.08 Å3 to 4163.99 Å3, respectively. The four reference X-ray powder diffraction patterns have been submitted for inclusion in the Powder Diffraction File (PDF).

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.CrossRefGoogle Scholar
Britt, D., Furukawa, H., Wang, B., Glover, T. G., and Yaghi, O. M. (2009). “Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites,” Proc. Natl. Acad. Sci. U.S.A. 106(49), 2063720640.CrossRefGoogle ScholarPubMed
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B 41, 244247.CrossRefGoogle Scholar
Caskey, S. R., Wong-Foy, A. G., and Matzger, A. J. (2008). “Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores,” J. Am. Chem. Soc. 130, 1087010871.CrossRefGoogle Scholar
Dalesio, L. R., Hill, J. O., Kraimer, M., Lewis, S., Murray, D., Hunt, S., Watson, W., Clausen, M., and Dalesio, J. (1994). “The experimental physics and industrial control-system architecture-past, present, and future,” Nucl. Instrum. Methods Phys. Res. A 352, 179184.CrossRefGoogle Scholar
Dietzel, P. D. C., Morita, Y., Blom, R., and Fjellvâg, H. (2005). “An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains,” Angew. Chem. Int. Ed. 44, 63546358.CrossRefGoogle Scholar
Dietzel, P. D. C., Panella, B., Hirscher, M., Blom, R., and Fjellvåg, H. (2006). “Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework,” Chem. Commun., 959961.CrossRefGoogle Scholar
Glover, T. G., Peterson, G. W., Schindler, B. J., Britt, D., and Yaghi, O. (2011). “MOF74 building unit has a direct impact on toxic gas adsorption,” Chem. Eng. Sci. 66, 163170.CrossRefGoogle Scholar
Larson, A. C. and von Dreele, R. B. (1992). “GSAS-General Structure Analysis System,” US Government contract (W-7405-ENG-36) by the Los Alamos National Laboratory, which is operated by the University of California for the U.S. Department of Energy.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Lynn Ribaud, Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat., 15, 427432.CrossRefGoogle ScholarPubMed
PDF, Powder Diffraction File, ICDD, Newtown Squares, PAGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M., and Yaghi, O. M. (2005). “Rod packings and metal-organic frameworks constructed from R-d-shaped secondary building units,” J. Am. Chem. Soc. 127, 15041518.CrossRefGoogle ScholarPubMed
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Crystallogr. A32, 751767.CrossRefGoogle Scholar
Standard reference materials (SRMTM) are produced by National Institute of Standards SRM Office, Gaithersburg, MD 20899. For details, please contact .Google Scholar
Tranchemontagne, D. J., Hunt, J. R., and Yaghi, O. M. (2008). “Room temperature synthesis of metal-organic framework: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0,” Tetrahedron 64, 85538557.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operation results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle Scholar
Wu, H., Zhou, W., and Yildirim, T. (2009). “High-capacity methane storage in metal-organic frameworks M 2(dhtp): the important role of open metal sites,” J. Am. Chem. Soc. 131, 49955000.CrossRefGoogle ScholarPubMed
Wu, H., Simmons, J. M., Srinivas, G., Zhou, W., and Yildirim, T. (2010). “Adsorption sites and binding nature of CO2 in prototypical metal-organic frameworks” A combined neutron diffraction and first-principles study,” J. Phys. Chem. Lett. 1, 19461951.CrossRefGoogle Scholar
Zhou, W., Wu, H., and Yildirim, T. (2008). “Enhanced H2 Adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions,” J. Am. Chem. Soc. 130, 15368–15269.CrossRefGoogle ScholarPubMed