Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T05:36:30.068Z Has data issue: false hasContentIssue false

Subsolidus phase relations of the Dy-Fe-Al system

Published online by Cambridge University Press:  05 March 2012

Y. Q. Chen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
J. K. Liang*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China and International Center for Materials Physics, Academic Sinica, Shenyang 110016, China
J. Luo
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
J. B. Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
G. H. Rao
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The subsolidus phase relations of the Dy-Fe-Al system have been investigated by means of X-ray powder diffraction. There are 5 ternary compounds, 10 binary compounds, and 21 three-phase regions in this system. The solid-solution regions of Dy(Fe1−xAlx)2, DyFe3−xAlx, Dy2(Fe1−xAlx)17, and DyFe12−xAlx have been determined based on the dependence of their unit-cell parameters on the Al content.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-el-Aal, M. M., Ilyushin, A. S., Pechennikov, A. V., Sharapov, Yu. R., and Chechnerikov, V. I. (1987). “The structure and magnetic properties of compounds of the Dy1−xGdxAl2 system,” Moscow Univ. Phys. Bull.MUPBAC 42, 126129.Google Scholar
Baenziger, N. C. and Hegenbarth, J. J. (1964). “Gadolinium and dysprosium intermetallic phases. III: The structures of Gd3Al2, Dy3Al2, Gd5Ge3, Dy5Ge3 and DyAl3,” Acta Crystallogr.ACSEBH 17, 620621.10.1107/S0365110X64001499CrossRefGoogle Scholar
Baenziger, N. C. and Moriarty, J. L. (1961). “Gadolinium and dysprosium intermetallic phases. II: Laves phases and other structure types,” Acta Crystallogr.ACSEBH 14, 948950.10.1107/S0365110X6100276XCrossRefGoogle Scholar
Bara, J. J., Pedziwiatr, A. T., and Zarek, W. (1982). “Investigations of crystal and magnetic properties of Dy-Fe intermetallic compounds,” J. Magn. Magn. Mater.JMMMDC 27, 168174.10.1016/0304-8853(82)90268-2CrossRefGoogle Scholar
Barlock, J. G. and Mondolfo, L. F. (1975). “Structure of some aluminium-iron-magnesium-manganese-silicon alloys,” Z. Metallkd.ZEMTAE 66, 605611.Google Scholar
Bashkatov, A. N., Sidorenko, F. A., Zelenin, L. P., Gal’perina, T. N., Gel’d, P. V., and Zotov, T. D. (1971). “Magnetic properties of the β phase of the iron-aluminium system,” Fiz. Met. Metalloved.FMMTAK 32, 569574 [“Magnetic properties of the beta phase of the iron-aluminium system,” Phys. Met. Metallogr.PHMMA6 32, 118123 (1971)].Google Scholar
Bècle, C. and Lemaire, R. (1967). “Structures cristallines des composés DyAl et CeAl et des autres composés equiatomiques de l’aluminium avec les métauz des terres rares,” Acta Crystallogr.ACSEBH 23, 840845.10.1107/S0365110X67003779CrossRefGoogle Scholar
Black, P. J. (1955). “The structure of FeAl3,” Acta Crystallogr.ACSEBH 8, 4348.10.1107/S0365110X5500011XCrossRefGoogle Scholar
Bradley, A. J. and Jay, A. H. (1932). “The lattice spacings of iron-aluminium alloys,” J. Iron Steel Inst., LondonJISIAX 125, 339357.Google Scholar
Burkhardt, U., Grin, Yu., Ellner, M., and Peters, K. (1994). “Structure refinement of the iron-aluminium phase with the approximate composition Fe2Al5,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 50, 313316.10.1107/S0108768193013989CrossRefGoogle Scholar
Buschow, K. H. J. (1965). “Rare earth-aluminium intermetallic compounds of the form RAl and R3Al3,” J. Less-Common Met.JCOMAH 8, 209212.10.1016/0022-5088(65)90047-0CrossRefGoogle Scholar
Buschow, K. H. J. (1966). “The crystal structures of the rare-earth compounds of the form R2Ni17, R2Co17 and R2Fe17,” J. Less-Common Met.JCOMAH 11, 204208.10.1016/0022-5088(66)90006-3CrossRefGoogle Scholar
Buschow, K. H. J. and van der Goot, A. S. (1971). “The crystal structure of rare-earth aluminium compounds R2Al,” J. Less-Common Met.JCOMAH 24, 117120.10.1016/0022-5088(71)90175-5CrossRefGoogle Scholar
Cannon, J. F. and Hall, H. T. (1975). “Effect of high pressure on the crystal structures of lanthanide trialuminides,” J. Less-Common Met.JCOMAH 40, 313328.10.1016/0022-5088(75)90076-4CrossRefGoogle Scholar
Chen, Y. Q., Liang, J. K., Luo, J., Li, J. B., and Rao, G. H. (2010). “Anomalous phase composition in the two-phase region of DyFe3−xAlx (x≤1.0),” Powder Diffr.PODIE2 25, 349354.10.1154/1.3507088CrossRefGoogle Scholar
Corby, R. N. and Black, P. J. (1973). “The structure of FeAl2 by anomalous dispersion methods,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 29, 26692677.10.1107/S056774087300734XCrossRefGoogle Scholar
Hollingsworth, E. H., Frank, G. R., and Willett, R. E. (1962). “Identification of a new Al-Fe constituent, FeAl6,” Trans. Metall. Soc. AIMETMSAAB 224, 188189.Google Scholar
Jin, L., James, W. J., Lemaire, R., and Rhyne, J. (1986). “Magnetic structure of DyFe3,” J. Less-Common Met.JCOMAH 118, 269273.10.1016/0022-5088(86)90176-1CrossRefGoogle Scholar
Kasprzyk, A., Zarek, W., and Slebarski, A. (1985). “Magnetic iron clusters in Dy(Fe1−xAlx)2 compounds above the Curie temperature,” J. Less-Common Met.JCOMAH 105, 231245.10.1016/0022-5088(85)90410-2CrossRefGoogle Scholar
Kirchmayr, H. R. and Poldy, C. A. (1978). “Magnetism in rare earth-3D intermetallics,” J. Magn. Magn. Mater.JMMMDC 8, 142.10.1016/0304-8853(78)90073-2CrossRefGoogle Scholar
Lihl, F. and Ebel, H. (1961). “Röntgenographische untersuchungen über den aufbau der eisenreichen legierungen des systems eisen-aluminium,” Arch. Eisenhuettenwes.AREIAT 32, 483487.Google Scholar
Massalski, T. B., Ed. (1990). Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Metals Park, OH).Google Scholar
Muraoka, Y., Shiga, M., and Nakamura, Y. (1977). “Magnetic properties and Mössbauer effect of A(Fe1−xBx)2 (A=Y or Zr, B=Al or Ni) laves phase intermetallic compounds,” Phys. Status Solidi APSSABA 42, 369374.10.1002/pssa.2210420141CrossRefGoogle Scholar
Nassau, K., Cherry, L. V., and Wallace, W. E. (1960). “Intermetallic compounds between lanthanons and transition metals of the first long period. I: Preparation, existence and structural studies,” J. Phys. Chem. SolidsJPCSAW 16, 123130.10.1016/0022-3697(60)90082-2CrossRefGoogle Scholar
Oesterreicher, H. and Mcneely, D. (1977a). “Studies on compounds DyFe3, Dy6Fe23 and Dy2Fe17 with Al substitution for Fe. I: Structural investigations,” J. Less-Common Met.JCOMAH 53, 235243.10.1016/0022-5088(77)90108-4CrossRefGoogle Scholar
Oesterreicher, H. and Mcneely, D. (1977b). “Studies on compounds DyFe3, Dy6Fe23 and Dy2Fe17 with Al substitution for Fe. II: Magnetic investigations,” J. Less-Common Met.JCOMAH 53, 245251.10.1016/0022-5088(77)90109-6CrossRefGoogle Scholar
Plusa, D. (1985). “Effect of aluminium on magnetic properties of DyFe3 compounds,” J. Magn. Magn. Mater.JMMMDC 51, 331336.10.1016/0304-8853(85)90032-0CrossRefGoogle Scholar
Plusa, D., Pfranger, R., and Wyslocki, B. (1984). “Magnetic properties of the Dy2(Fe1−xAlx)17 pseudobinary compounds,” J. Less-Common Met.JCOMAH 99, 8797.10.1016/0022-5088(84)90337-0CrossRefGoogle Scholar
Pop, I., Dihoiu, N., and Pop, L. (1986). “Magnetic susceptibility and knight shift on the intermetallic compound Dy2Al17,” Stud. Univ. Babes-Bolyai, Phys. 31, 3235.Google Scholar
Pszczoła, J., Gicala, B., and Suwalski, J. (1998). “57Fe Slater-Pauling dependence in the Dy(Fe1−xAlx)2 intermetallic system,” J. Alloys Compd.JALCEU 274, 4754.10.1016/S0925-8388(98)00562-3CrossRefGoogle Scholar
Sharapov, Yu. R., Ilyushin, A. S., Torchinova, R. S., Chechnerikov, V. I., and Pechennikov, A. V. (1988). “Structure and magnetic properties of the compounds Dy3Al2 crystallized in conditions of microgravitation,” Russ. Metall.RMLYAQ 1, 191193.Google Scholar
Thiede, V. M. T., Ebel, T., and Jeitschko, W. (1998). “Ternary aluminides LnT2Al10 (Ln=Y, La-Nd, Sm, Gd-Lu and T=Fe, Ru, Os) with YbFe2Al10 type structure and magnetic properties of the iron-containing series,” J. Mater. Chem.JMACEP 8, 125.10.1039/a705854cCrossRefGoogle Scholar
van der Goot, A. S. and Buschow, K. H. J. (1970). “The dysprosium-iron system: Structural and magnetic properties of dysprosium-iron compounds,” J. Less-Common Met.JCOMAH 21, 151157.10.1016/0022-5088(70)90113-XCrossRefGoogle Scholar
Van Vucht, J. H. N. and Buschow, K. H. J. (1964). “On the binary aluminium-rich compounds of the rare-earth elements,” Philips Res. Rep.PRREA9 19, 319322.Google Scholar
Vivchar, O. I., Zarechny, O. S., and Ryabov, V. R. (1973). “X-ray investigation of system Dy-Fe-Al in region of 0–33.3% at percent dysprosium,” Dopov. Akad. Nauk Ukr. RSR, Ser. A: Fiz.-Mat. Tekh. Nauki. 2, 159161.Google Scholar