Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T07:06:01.180Z Has data issue: false hasContentIssue false

Subsolidus phase relations and crystal structures in the Pr1+xBa2−xCu3Oδ system at 950 °C

Published online by Cambridge University Press:  05 March 2012

G. B. Song*
Affiliation:
School of Material Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621002, Chinaand Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
J. K. Liang
Affiliation:
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, Chinaand International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China
F. S. Liu
Affiliation:
School of Material Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621002, Chinaand Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
L. T. Yang
Affiliation:
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
J. Luo
Affiliation:
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
G. H. Rao
Affiliation:
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
*
a)Electronic mail: [email protected]

Abstract

Pr1+xBa2−xCu3Oδ solid solution was investigated by means of X-ray powder diffraction and Rietveld analysis. Single-phase PrBa2Cu3Oδ (Pr123) can be synthesized under a Pr-rich condition by sintering at 950 °C in air. The solubility of Pr1+xBa2−xCu3Oδ solid solution is 0.08≤x≤0.80. The structure of Pr1+xBa2−xCu3Oδ is orthorhombic for 0.08≤x<0.30, and transforms into tetragonal for 0.30≤x≤0.80. To form single-phase Pr123, the Ba sites in the Pr123 structure are partially occupied by excess Pr ions, and the smallest amount of excess Pr is x=0.08. Meanwhile, all Ba ions stay in the Ba sites.

Type
Selected Papers from 2003 Chinese National Symposium on XRD
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bednorz, J. G. and Muller, K. A. (1986). “Possible high-T C superconductivity in the Ba–La–Cu–O system,” Z. Phys. B: Condens. Matter ZPCMDN 64, 189193.CrossRefGoogle Scholar
Bertrand, C., Galez, P., Gladyskerskii, R. E., and Jorda, J. L. (1999). “The Pr(Ba1−xPrx)2Cu3O7+δ solid solution: A crystal structure and phase diagram study,” Physica C PHYCE6 321, 151161.CrossRefGoogle Scholar
Blackstead, H. A., Chrisey, D. B., Dow, J. D., Horwitz, J. S., Klunzinger, A. E., and Pulling, D. B. (1995). “Superconductivity in PrBa2Cu3O7,” Phys. Lett. A PYLAAG 207, 109112.CrossRefGoogle Scholar
Booth, C. H., Bridges, F., Boyce, J. B., Chaeson, T., Zhao, Z. X., and Cervantes, P. (1994). “Local disorder in the oxygen environment around praseodymium in Y1−xPrxBa2Cu3O7 from X-ray-absorption fine structure,” Phys. Rev. B PRBMDO 49, 34323442.CrossRefGoogle ScholarPubMed
Brown, I. D., (1981). Structure and Bonding in Crystals, edited by O’Keefe, M. and Navrotsky, A. (Academic, New York), Vol. 2, pp. 3251.CrossRefGoogle Scholar
Che, G. C., Liang, J. K., Chen, W., Yang, Q. S., Chen, G. H., and Ni, Y. M. (1988). “Phase-diagram of the BaO–CuO–Y2O3 system and the relationship between composition and superconductivity,” J. Less-Common Met. JCOMAH 138, 137142.CrossRefGoogle Scholar
Chu, G. W., Hor, P. H., Meng, R. L., Gao, L., and Huang, Z. J. (1987). “Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system,” Science SCIEAS 235, 567569.CrossRefGoogle ScholarPubMed
Frase, K. G., DeLeeuw, D. M., AMutsaers, C. A. H., Langereis, C., Smooren-Burg, H. C. A., and Roommers, P. J. (1988). “Compounds and phase compatibilities in the system Y2O3–BaO–CuO at 950 °C,” Physica C PHYCE6 152, 3949.Google Scholar
Hinks, D. G., Soderholm, L., Caponell, D. W., Jorgense, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Grace, J. D. (1987). “Phase diagram and superconductivity in the Y–Ba–Cu–O system,” Appl. Phys. Lett. APPLAB 50, 16881690.CrossRefGoogle Scholar
Liang, J. K., Chen, X. L., Wang, X. T., Chen, W., Chen, Z., Qiao, Z. Y., Zhang, Y. L., Xie, S. S., and Ni, Y. M. (1990). “The crystal structure and property of ternary compound and phase relations in the system Pr6O11–BaO–CuO sintered at 920 °C,” Solid State Commun. SSCOA4 76, 903910.CrossRefGoogle Scholar
Luszczek, M. (2001). “Structure and electric transport properties of Ca-doped bulk PrBa2Cu3O7−δ,” Physica C PHYCE6 355, 1522.CrossRefGoogle Scholar
Oka, K. and Ito, T., (1994). “Crystal growth of REBa2Cu3O7−y (RE=Y, La, Pr, Nd and Sm) by the travelling-solvent floating-zone method,” Physica C PHYCE6 227, 7784.CrossRefGoogle Scholar
Oka, K., Zou, Z. G., and Ito, T. (1997). “Crystal growth of PrBa2Cu3O7−y,” Physica C PHYCE6 282–287, 479480.CrossRefGoogle Scholar
Osamura, K. and Zhang, W. (1993). “Phase-diagrams of Ln–Ba–Cu–o systems (Ln=lanthanide),” Z. Metallkd. ZEMTAE 84, 522528.Google Scholar
Park, M., Kramer, M. J., Dennis, K. W., and McCallum, R. W. (1996). “Phase equilibria in the Pr–Ba–Cu–O system under varied oxygen partial pressures,” Physica C PHYCE6 259, 4353.CrossRefGoogle Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. ACCRA9 22, 151152.CrossRefGoogle Scholar
Tagami, M., Sumida, M., Krauns, Ch., Yamada, Y., Umeda, T., and Shiohara, Y. (1995). “Fabrication and growth rate estimation of PrBa2Cu3O7−δ single crystal by the modified top seeded crystal pulling method,” Physica C PHYCE6 250, 240246.CrossRefGoogle Scholar
Young, R. A., Sakthivel, A., Moss, T. S., and Paiva-Santos, C. O. (1995). “DBWS-9411—an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers,” J. Appl. Crystallogr. JACGAR 28, 366367.CrossRefGoogle Scholar
Zhao, Z. X., Chen, L. Q., Yang, Q. S., Huang, Y. Z., Chen, G. H., Tang, R. M., and Liu, G. R. (1987). “Superconductivity above liquid-nitrogen temperature in Ba–Y–Cu oxides,” Kexue Tongbao (Foreign Lang. Ed.) KHTPBU 32, 661664.Google Scholar