Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T21:32:33.071Z Has data issue: false hasContentIssue false

Study on the crystal structure of the high Tc superconductor (Hg,Re)–1223

Published online by Cambridge University Press:  06 March 2012

L. G. Martinez
Affiliation:
Nuclear and Energy Research Institute - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000, São Paulo, SP, Brazil
J. L. Rossi
Affiliation:
Nuclear and Energy Research Institute - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000, São Paulo, SP, Brazil
H. P. S. Corrêa
Affiliation:
Nuclear and Energy Research Institute - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000, São Paulo, SP, Brazil and Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
C. A. C. Passos
Affiliation:
Federal University of Espírito Santo, Vitória, ES, Brazil
M. T. D. Orlando
Affiliation:
Nuclear and Energy Research Institut - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000, São Paulo, SP, Brazil and Federal University of Espírito Santo, Vitória, ES, Brazil

Abstract

Samples of the superconducting compound (Hg,Re)–1223 of nominal composition Hg0.82Re0.18Ba2Ca2Cu3O8+δ and different oxygen contents were studied using X-ray absorption and diffraction techniques. In the synthesis process, treatments under different ratio oxygen/argon gas mixtures of 5%, 10%, and 15% O2 resulted in samples named as Sample A, Sample B, and Sample C, respectively. It was determined by using the XANES technique that in these compounds the Re cation has valence +7. The study by EXAFS determined that the octahedral coordination is distorted and the distances of Re–O bonds are of the order of 1.85 A˚ for equatorial oxygen and 2.10 A˚ for the apical ones. The Rietveld refinement of X-ray powder diffraction data revealed that the studied samples presented segregation of two superconducting phases with space group P4/mmm and distinct lattice parameters, also confirmed by anomalous X-ray scattering. The main phase was associated to the phase (Hg,Re)–1223 with higher oxygen content and the secondary superconducting phase was associated with the undoped Hg–1223 phase. Measurements of ac magnetic susceptibility showed that the sample treated under 10% O2 atmosphere presented the best superconducting properties.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altshuler, E., Chu, C.W., Orlando, M.T. D., Sin, A., Batista-Leyva, A.J., Buntar, V., and Weber, H.W. (2002). “Magnetic irreversibility in Hg1−xRexBa2Ca2Cu3O8+δ: effects of neutron irradiation,” Physica CPHYCE6 371, 224228. phc, PHYCE6 CrossRefGoogle Scholar
Berdnorz, J.G. and Müller, K.A. (1986). “Possible high-Tc superconductivity in the Ba-La-Cu-O system,” Z. Phys. B: Condens. MatterZPCMDN 64, 189193. zpb, ZPCMDN CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr., Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 41, 244247. acl, ASBSDK CrossRefGoogle Scholar
Chmaissem, O., Guptasarma, P., Welp, U., Hinks, D.G., and Jorgensen, J.D. (1997). “Effect of Re substitution on the defect structure, and superconducting properties of (Hg(1−x)Rex)Ba2Can−1CunO2n+2+δ (n=2,3,4),” Physica CPHYCE6 292, 305314. phc, PHYCE6 CrossRefGoogle Scholar
Ferreira, F.F., Granado, E., Carvalho, W. Jr., Kycia, S.W., Bruno, D., and Droppa, R. Jr (2006). “X-ray powder diffraction beamline at D10B of LNLS: application to the Ba2FeReO6 double perovskite,” J. Synchrotron Radiat.JSYRES 13, 4653. jsy, JSYRES CrossRefGoogle Scholar
FIZ and NIST (2003). “Inorganic Crystal Structure Database (ICSD),” CD-ROM release 2003. Fachinformationszentrum Karlsruhe (FIZ), Karlsruhe, Germany and the National Institute of Standards and Technology (NIST), Gaithersburg, Maryland.Google Scholar
González, J.L., Mello, E.V. L., Orlando, M.T. D., Yugue, E.S., and Baggio-Saitovitch, E. (2001). “Transport critical current in granular samples under high magnetic fields,” Physica CPHYCE6 364–365, 347349. phc, PHYCE6 Google Scholar
ICDD (2003). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, W. F., Newtown Square, PA, 19073–3272.Google Scholar
Larson, A.C. and Von Dreele, R.B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86–748) (Los Alamos National Laboratory, Los Alamos, New Mexico).Google Scholar
Martinez, L.G. (2005). “Study of the crystalline structure of the superconducting compound Hg1−xRexBa2Ca2Cu3O8+δ–(Hg,Re)–1223,” Ph.D. thesis, Instituto de Pesquisas Energéticas e Nucleares IPEN/USP, São Paulo, Brazil (in Portuguese).Google Scholar
de Mello, E.V. L., Orlando, M.T. D., González, J.L., Caixeiro, E.S., and Baggio-Saitovitch, E. (2002). “Pressure studies on the pseudogap and critical temperatures of a high-Tc superconductor,” Phys. Rev. BPRBMDO 66, 092504. prb, PRBMDO CrossRefGoogle Scholar
Nazzal, A.I., Lee, V.Y., Engler, E.M., Jacowitz, R.D., Tokura, Y., and Torrance, J.B. (1988). “New procedure for determination of [Cu-O]+p charge and oxygen content in high Tc copper oxides,” Physica CPHYCE6 153–155, 13671368. phc, PHYCE6 CrossRefGoogle Scholar
Newville, M. (2001). “IFEFFIT: interactive XAFS analysis and FEFF fitting,” J. Synchrotron Radiat.JSYRES 8, 322324. jsy, JSYRES CrossRefGoogle ScholarPubMed
Oliveira, F.D. C., Passos, C.A. C., Fardin, J.F., Simonetti, D.S. L., Passamai, J.L. Jr., Belich, H., Medeiros, E.F., Orlando, M.T. D., and Ferreira, M.M. (2006). “The influence of oxygen partial pressure on growth of the (Hg,Re)-1223 intergrain junction,” IEEE Trans. Appl. Supercond.ITASE9 16, 1520. tas, ITASE9 CrossRefGoogle Scholar
Orlando, M.T. D., Martinez, L.G., Corrêa, H.P. S., and Passos, C.A. C. (2003). “Structural parameters as a function of the oxygen content in (Hg,Re)-1223,” in Activity Report—LNLS, pp. 311–312.Google Scholar
Orlando, M.T. D., Passos, C.A. C., Passamai, J.L. Jr., Medeiros, E.F., Orlando, C.G. P., Sampaio, R.V., Corrêa, H.S. P., de Melo, F.C. L., Martinez, L.G., and Rossi, J.L. (2006). “Distortion of ReO6 octahedron in the Hg0.82Re0.18Ba2Ca2Cu3O8+d superconductor,” Physica CPHYCE6 434, 5361. phc, PHYCE6 CrossRefGoogle Scholar
Passos, C.A. C., Orlando, M.T. D., Oliveira, F.D. C., da Cruz, P.C. M., Passamai, J.L. Jr., Orlando, C.G. P., Eloi, N.A., Corrêa, H.P. S., and Martinez, L.G. (2002). “Effects of oxygen content on the properties of the Hg0.82Re0.18Ba2Ca2Cu3O8+d superconductor,” Supercond. Sci. Technol.SUSTEF 15, 11771183. sux, SUSTEF CrossRefGoogle Scholar
Passos, C.A. C., Orlando, M.T. D., Passamai, J.L. Jr., de Mello, E.V. L., Corrêa, H.P. S., and Martinez, L.G. (2006). “Resistivity study of the pseudogap phase for (Hg,Re)-1223 superconductors,” Phys. Rev. BPRBMDO 74, 094514. prb, PRBMDO CrossRefGoogle Scholar
Putilin, S.N., Antipov, E.V., Chmaissem, O., and Marezio, M. (1993). “Superconductivity at 94 K in HgBa2CuO4+δ,” Nature (London)NATUAS 362, 226228. nat, NATUAS CrossRefGoogle Scholar
Ravel, B. (2001). “ATOMS: crystallography for the X-ray absorption spectroscopist,” J. Synchrotron Radiat.JSYRES 8, 314316. jsy, JSYRES CrossRefGoogle ScholarPubMed
Shimoyama, J., Hahakura, S., Kobayashi, R., Kitazawa, K., Yamafuji, K., and Kishio, K. (1994). “Interlayer distance and magnetic properties of Hg-based superconductors,” Physica CPHYCE6 235–240, 27952796. phc, PHYCE6 CrossRefGoogle Scholar
Thompson, P., Cox, D.E., and Hastings, J.B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr.JACGAR 20, 7983. acr, JACGAR CrossRefGoogle Scholar
Toby, B.H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR 34, 210213. acr, JACGAR CrossRefGoogle Scholar