Published online by Cambridge University Press: 20 September 2019
We report the dielectric properties of ACu3Ti4O12 (A = Eu2/3, Tb2/3, and Na1/2Eu1/2) (ACTO) in the frequency range of 40 Hz–2.5 MHz and in the temperature range of 293–473 K. The experimental results show that substituting for Ca improves the loss tangent of CaCu3Ti4O12 (CCTO). Although the dielectric constants largely decrease, they remain at a high level of 103. To identify the observed dielectric performances of ACTO, scanning electron microscopy and complex impedance measurements were conducted. The conducting mechanism for the grain of ACTO was found to be ion jumping rather than electron hopping (for the grain of CCTO). The results show that the decreased dielectric constant may be related to the decreased grain size, the different carrier in the grain, the different grain boundary properties, or a combination of these factors. All these factors are associated with the deficiency of oxygen vacancies in the samples of ACTO. The decreased loss tangent may be due to the increase in the grain boundary resistance.