Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T17:01:38.736Z Has data issue: false hasContentIssue false

Study of the dielectric properties of ACu3Ti4O12 (A = Eu2/3, Tb2/3, and Na1/2Eu1/2)

Published online by Cambridge University Press:  20 September 2019

M. Li*
Affiliation:
Department of Applied Physics, Xi'an University of Technology, Xi'an 710054, China
Y. Shen
Affiliation:
Department of Applied Physics, Xi'an University of Technology, Xi'an 710054, China
C. X. Li
Affiliation:
Department of Applied Physics, Xi'an University of Technology, Xi'an 710054, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

We report the dielectric properties of ACu3Ti4O12 (A = Eu2/3, Tb2/3, and Na1/2Eu1/2) (ACTO) in the frequency range of 40 Hz–2.5 MHz and in the temperature range of 293–473 K. The experimental results show that substituting for Ca improves the loss tangent of CaCu3Ti4O12 (CCTO). Although the dielectric constants largely decrease, they remain at a high level of 103. To identify the observed dielectric performances of ACTO, scanning electron microscopy and complex impedance measurements were conducted. The conducting mechanism for the grain of ACTO was found to be ion jumping rather than electron hopping (for the grain of CCTO). The results show that the decreased dielectric constant may be related to the decreased grain size, the different carrier in the grain, the different grain boundary properties, or a combination of these factors. All these factors are associated with the deficiency of oxygen vacancies in the samples of ACTO. The decreased loss tangent may be due to the increase in the grain boundary resistance.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, T. B., Sinclair, D. C., and West, A. R. (2002). “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,” Adv. Mater. 14, 13211323.Google Scholar
Babu, J. B., He, M., Zhang, D. F., Chen, X. L., and Dhanasekaran, R. (2007). “Enhancement of ferroelectric properties of Na1/2Bi1/2TiO3-BaTiO3 single crystals by Ce dopings,” Appl. Phys. Lett. 90, 102901.Google Scholar
Bidault, O., Maglione, M., Actis, M., and Kchikech, M. (1995). “Polaronic relaxation in perovskites,” Phys. Rev. B. 52, 41914197.Google Scholar
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.Google Scholar
Capsoni, D., Bini, M., Massarotti, V., Chiodelli, G., Mozzatic, M. C., and Azzoni, C. B. (2004). “Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12,” J. Solid State Chem. 177, 44944500.Google Scholar
Chen, X. L. and Eysel, W. (1999). “Subsolidus phase relations in La2O3-Bi2O3-CuO,” Powder Diffr. 14, 274275.Google Scholar
Chen, X. L., Liang, J. K., and Wang, C. (1995). “Effect of high-angle diffraction data on Rietveld structure refinement,” Acta Phys. Sin. Ov. Ed. 4, 259267.Google Scholar
Chen, X. L., Bauernfeind, L., and Braun, H. F. (1997). “Na0.5La0.5RuO3: structure and electronic properties,” Phys. Rev. B. 55, 68886895.Google Scholar
Chiodelli, G., Massarotti, V., Capsoni, D., Bini, M., Azzoni, C. B., Mozzati, M. C., and Lupotto, P. (2004). “Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials,” Solid State Commun. 132, 241246.Google Scholar
Chung, S.-Y., Kim, I.-D., and Kang, S.-J. (2004). “Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate,” Nat. Mater. 3, 774778.Google Scholar
Fang, T. T. and Liu, C. P. (2005). “Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12,” Chem. Mater. 17, 51675171.Google Scholar
Feng, T.-T. and Shiau, H.-K. (2004). “Mechanism for developing the boundary barrier layers of CaCu3Ti4O12,” J. Am. Ceram. Soc. 87, 20722079.Google Scholar
Grubbs, R. K., Venturini, E. L., Clem, P. G., Richardson, J. J., Tuttle, B. A., and Samara, G. A. (2005). “Dielectric and magnetic properties of Fe- and Nb-doped CaCu3Ti4O12,” Phys. Rev. B. 72, 104111.Google Scholar
He, L., Neaton, J. B., Cohen, M. H., and Vanderbilt, D. (2002). “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B. 65, 214112.Google Scholar
Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., and Ramirez, A. P. (2001). “Optical response of high-dielectric-constant perovskite-related oxide,” Science. 293, 673676.Google Scholar
Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., Subramanian, M. A., and Ramirez, A. P. (2003). “Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12,” Phys. Rev. B. 67, 092106.Google Scholar
Jesurani, S., Kanagesan, S., Hashim, M., and Ismail, I. (2013). “Dielectric properties of Zr doped CaCu3Ti4O12 synthesized by sol-gel route,” J. Alloys Comp. 551, 456462.Google Scholar
Kim, K.-M., Lee, J.-H., Lee, K.-M., Kim, D.-Y., Riu, D.-H., and Lee, S. B. (2008). “Microstructural evolution and dielectric properties of Cu-deficient and Cu-excess CaCu3Ti4O12 ceramics,” Mater. Res. Bull. 43, 284291.Google Scholar
Lei, N. and Chen, X. M. (2007). “Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 91, 122905.Google Scholar
Li, M., Feteira, A., Sinclair, D. C., and West, A. R. (2006). “Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 88, 232903.Google Scholar
Li, M., Liu, Q., and Li, C. X. (2017). “Study of the dielectric responses of Eu-doped CaCu3Ti4O12,” J. Alloys Comp. 699, 278282.Google Scholar
Liu, J. J., Duan, C.-G., Yin, W.-G., Mei, W. N., Smith, R. W., and Hardy, J. R. (2004). “Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12,” Phys. Rev. B. 70, 144106.Google Scholar
Liu, J. J., Duan, C.-G., and Mei, W. N. (2005). “Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3),” J. Appl. Phys. 98, 093703.Google Scholar
Liu, L. J., Fan, H. Q., Chen, X. L., and Fang, P. Y. (2009). “Electrical properties and microstructural characteristics of nonstoichiometric CaCu3xTi4O12 ceramics,” J. Alloys Comp. 469, 529534.Google Scholar
Morrison, F. D., Sinclair, D. C., and West, A. R. (2001). “An alternative explanation for the origin of the resistivity anomaly in La-doped BaTiO3,” J. Am. Ceram. Soc. 84, 474476.Google Scholar
Ni, L., Chen, X. M., Liu, X. Q., and Hou, R. Z. (2006). “Microstructure-dependent giant dielectric response in CaCu3Ti4O12 ceramics,” Solid State Commun. 139, 4550.Google Scholar
Ren, H., Liang, P., and Yang, Z. (2010). “Processing, dielectric properties and impedance characteristics of Na0.5Bi0.5Cu3Ti4O12 ceramics,” Mater. Res. Bull. 45, 16081613.Google Scholar
Sebald, J., Krohnsa, S., Lunkenheimer, P., Ebbinghaus, S. G., Riegg, S., Reller, A., and Loidl, A. (2010). “Colossal dielectric constants: a common phenomenon in CaCu3Ti4O12 related materials,” Solid State Commun. 150, 857860.Google Scholar
Senda, S., Rhouma, S., Torkani, E., Megriche, A., and Autret, C. (2017). “Effect of nickel substitution on electrical and microstructural properties of CaCu3Ti4O12 ceramic,” J. Alloys Comp. 698, 152158.Google Scholar
Sinclair, D. C., Adams, T. B., Morrison, F. D., and West, A. R. (2002). “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80, 21532155.Google Scholar
Somphan, Z. W., Thongbai, P., Yamwong, T., and Maensiri, S. (2013). “High Schottky barrier at grain boundaries observed in Na1/2Sm1/2Cu3Ti4O12 ceramics,” Mater. Res. Bull. 48, 40874092.Google Scholar
Subramanian, M. A. and Sleight, A. W. (2002). “ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy,” Solid State Sci. 4, 347351.Google Scholar
Subramanian, M. A., Li, D., Duan, N., Reisner, B. A., and Sleight, A. W. (2000). “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151, 323325.Google Scholar
Sulaimain, M. A., Hutagalung, S. D., Ain, M. F., and Ahmad, Z. A. (2010). “Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies,” J. Alloys Comp. 493, 486492.Google Scholar
Thongbai, P., Putasaeng, B., Yamwong, T., and Maensiri, S. (2012). “Modified giant dielectric properties of samarium doped CaCu3Ti4O12 ceramics,” Mater. Res. Bull. 47, 22572263.Google Scholar
Wang, C. C. and Zhang, L. W. (2007). “Polaron relaxation related to localized charge carriers in CaCu3Ti4O12,” Appl. Phys. Lett. 90, 142905.Google Scholar
Wang, W. Y., Zhang, D. F., Xu, T., Li, X. F., Zhou, T., and Chen, X. L. (2002). “Nonlinear electrical behavior and dielectric properties of (Ca, Ta)-doped TiO2 ceramics,” J. Alloys Comp. 335, 210215.Google Scholar
West, A. R., Adams, T. B., Morrison, F. D., and Sinclair, D. C. (2004). “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24, 14391448.Google Scholar
Yuan, W. X., Wu, Q. X., Liu, C. K., Luo, Z. K., and Li, Z. J. (2013a). “Effect of phase purity on dielectric properties of CaCu3+xTi4O12 ceramics,” Solid State Sci. 24, 5861.Google Scholar
Yuan, W. X., Luo, Z. K., and Wang, C. D. (2013b). “Investigation on effects of CuO secondary phase on dielectric properties of CaCu3Ti4O12 ceramics,” J. Alloys Comp. 562, 14.Google Scholar
Zhang, L. and Tang, Z.-J. (2004). “Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12,” Phys. Rev. B. 70, 174306.Google Scholar
Zhang, J. L., Zheng, P., Wang, C. L., Zhao, M. L., Li, J. C., and Wang, J. F. (2005). “Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures,” Appl. Phys. Lett. 87, 142901.Google Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 1

Download Li et al. supplementary material(File)
File 132.5 KB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 2

Download Li et al. supplementary material(File)
File 132.5 KB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 3

Download Li et al. supplementary material(File)
File 132.5 KB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 4

Download Li et al. supplementary material(File)
File 132.5 KB