Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T20:50:32.498Z Has data issue: false hasContentIssue false

Structure stability and magnetic properties of RIn3−xTx (R = Gd, Pr,T = Co, Fe, Mn)

Published online by Cambridge University Press:  19 December 2017

J. P. Han
Affiliation:
School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Y. Q. Guo*
Affiliation:
School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The syntheses and crystal structures and magnetic properties of novel RIn3−xTx (R = Gd,Pr;T = Fe,Co,Mn;x = 0–0.3) intermetallic compounds in rare earth-In-3d transition metal ternary system have been systematically investigated. It reveals that RIn3−xTx crystallizes in cubic AuCu3 type structure with a space group of Pm$\bar 3$m and Z = 1. The 1a and 3c crystal positions are occupied by R and In atoms, respectively. The 3d transition metals substitute partly for In and prefer to occupy the 3c site. The lattice parameters and unit cell volumes decrease with increasing the content of 3d transition metal in RIn3−xTx intermetallic compounds. The magnetic properties of RIn3−xTx are sensitive to T content. With increasing T content, GdIn3−xTx alloys show the paramagnetic, mixture of ferromagnetic and paramagnetic and ferromagnetic behavior. T doping into RIn3 induces the presence of ferromagnetic phase in GdIn3−xTx, which is totally different from those of the pure binary RIn3.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajorek, A., Chelkowska, G., Chrobak, A., and Kwiecien-Grudziecka, M. (2012). “Magnetism and electronic structure of selected Gd1−xSmxIn3 compounds,” Intermetallics 26, 142149.CrossRefGoogle Scholar
Bajorek, A., Chrobak, A., Ociepka, K, and Chelkowska, G. (2013). “The analysis of the magnetic properties and the electronic structure in the TbxGd1−xFe3 intermetallics,” Intermetallics 43, 110120.Google Scholar
Bajorek, A., Chrobak, A., Chełkowska, G., and Ociepka, K. (2015). Magnetism in the YxGd1-xFe3 system,” J. Magn. Magn. Mater. 395, 221228.Google Scholar
Bajorek, A., Prusik, K., Wojtyniak, M., and Chełkowska, G. (2016). “Evolution of morphology and magnetism of Ho(Fe0.5Co0.5)3 intermetallic nanopowders synthesized by HEBM,” Intermetallics. 76, 5669.Google Scholar
Bolyachkin, A. S., Neznakhin, D. S., Garaeva, T. V., Andreev, A. V., and Bartashevich, M. I. (2017). “Magnetic anisotropy of YFe3 compound,” J. Magn. Magn. Mater. 426, 740743.Google Scholar
Buschow, K. H. J. (1981). “Magnetic properties of amorphous rare-earth-iron alloys,” J. Magn. Magn. Mater. 22, 220226.Google Scholar
Chelvane, J. A., Banumathy, S., Palit, M., Basumatary, H., Singh, A. K., and Pandian, S. (2010). “Texture and magnetostriction studies in Bridgman solidified Ho0.85Tb0.15Fe1.95 alloys,” J. Alloys Compd. 507, 162166.Google Scholar
Deng, P., Li, J. G., and Xu, Z. M. (2006). “Study on the melt-textured technique in a magnetic field for giant magnetostrictive materials R–Fe alloy,” Mat. Sci. Eng. A. 419, 3944.Google Scholar
Guo, Y. Q., Zhang, X. H., and Wappling, R. (2000). “Crystal structure of La1−xSrxMnO3−2x+δF2x ,” J. Alloys Compd. 306, 133140.CrossRefGoogle Scholar
Hale, L., Gschneidner, K. A. Jr, Pecharsky, V. K., and Mudryk, Y. (2009). “Low temperature properties of some RIn3 compounds,” J. Alloys Compd. 472, 2429.Google Scholar
He, Q. and Guo, Y. Q. (2016). “Structure and magnetic properties of PrIn3−xCox ,” Appl. Phys. A. 122, 455.Google Scholar
Kletowski, Z. (1992). “Influence of the exchange interactions on thermopower in the heavy RIn3 compounds (R = Gd, Tb, Dy, Ho, Er and Lu),” Solid State Commun. 83(3), 241244.Google Scholar
Kletowski, Z. (1998). “High field magnetoresistance of some REIn3 compounds, RE = La, Ce, Pr and Sm,” J. Magn. Magn. Mater. 186, L7-L9.Google Scholar
Kletowski, Z., Czopnik, A., Tal, A., and de Boer, F. R. (2000) “High magnetic field properties of GdIn3,” Phys. B. 281–282, 163164.Google Scholar
Mucha, J. (2006). “Thermal conductivity of REIn3 compounds,” J. Phys.: Condens. Matter. 18, 14271439.Google Scholar
Nagai, N., Umehara, I., Ebihara, T., Albessard, A. K., Sugawara, H., Yamazaki, T., Satoh, K., and Onuki, Y. (1993). “Change of the Fermi surface in RIn3 ,” Phys. B. 186–188, 139142.Google Scholar
Silva, L. S., Peixoto, E. B., Mercena, S. G., Coelho, A. A., Meneses, C. T., and Duque, J. G. S. (2016). “Physical properties of antiferromagnetic single crystal GdIn3 ,” Mater. Lett.. 175, 912.Google Scholar
Sorescu, M., Diamandescu, L., and Valeanu, M. (2006). “Substitutional effects in RFe3 intermetallics (R = Dy, Sm, Y),” Intermetallics 14, 332335.Google Scholar
Umehara, I., Ebihara, T., Nagai, N., Fujimaki, Y., Satoh, K., and Onuki, Y. (1992). “De haas-van alphen effect in the antiferromagnetic compound GdIn3 ,” J. Phys. Soc. Jap. 61(1), 1922.Google Scholar
Supplementary material: File

Han and Guo supplementary material

Han and Guo supplementary material 1

Download Han and Guo supplementary material(File)
File 147.9 KB